ALTERSBEDINGTE VERÄNDERUNGEN VON FRAUENSTIMMEN

EINE AKUSTISCHE UND PERZEPTIVE ANALYSE

MAGISTERARBEIT

bei Prof. Dr. Walter F. Sendlmeier Fachgebiet Kommunikationswissenschaft Institut für Sprache und Kommunikation Technische Universität Berlin

vorgelegt von **Markus Brückl** (Matrikel-Nr. 176912)

Berlin, August 2002

Inhaltsverzeichnis

Inhaltsverzeichnis	2
Einleitung	5
I. Theoretischer Teil	
1 Theorien über das Altern	
1.1 Biologisches Altern	
1.2 Psychisches Altern	
1.3 Soziokulturelles Altern	
1.4 Theorien vom Altern der Stimme	
1.5 Konstruktdefinition: "Stimmalter"	
1.6 Zusammenfassung	
1.7 Informationsflussmodell	
2 Physische Veränderungen des Sprechapparats und deren Auswirkungen auf d	
Spracherzeugung	
2.1 Einführung	
2.2 Die Lunge und der Brustkorb	
\mathcal{E}	
2.3 Kehlkopf und Stimmlippen2.4 Das Ansatzrohr	
3 Veränderungen des Sprachsignals	
3.1 Akustische Korrelate des chronologischen Alters	
3.1.1 Grundfrequenz	
3.1.3 Maße der Stabilität von Grundfrequenz und Intensität	
3.1.4 Spektrales Rauschen	
3.1.5 Sprechrate	
3.1.6 Formantfrequenzen	
3.2 Akustische Korrelate des wahrgenommenen Alters	18
3.2.1 Grundfrequenz	
3.2.2 Maße der Stabilität von Grundfrequenz und Intensität	
3.2.3 Sprechrate	
3.2.4 Spektrales Rauschen	
3.2.5 Formantfrequenzen	
3.3 Zusammenfassende Tabelle	
4 Die Genauigkeit von Altersschätzungen	
4.1 Die Menge der Information	
4.2 Das Alter der Hörer	
4.3 Das Alter der Sprecher	
4.4 Der Dialekt/ Soziolekt des Sprechers	
II. Experimenteller Teil	
5 Zielsetzung, Schwerpunkt der Untersuchung	26
6 Methoden	27
6.1 Erhebung des Sprachmaterials	27
6.1.1 Die Sprecherinnen	
6.1.2 Qualität der Aufnahmen	
6.1.3 Art des Sprachmaterials	
6.2 Bearbeitung der Sprachbeispiele	
6.2.1 Die Vokalbeispiele	
6.2.2 Die Textbeispiele	
6.2.3 Die Beispiele freier Sprechweise	
6.3 Die stimmbeschreibenden Parameter	
6.4 Wahrnehmungstest 6.4.1 Die beurteilenden Hörer	
6.4.2 Das Testdesign	
6.5 Übersicht der statistischen Auswertung	
7 Ergebnisse	43 44

7.1 Zur U	Übereinstimmung der Altersschätzungen	. 44
	Prüfung der Übereinstimmung der Alterschätzungen aus den beiden Hörtestversionen	
7.1.2	Prüfung der Übereinstimmung der Beurteilungen durch die Hörer	48
	Zusammenfassung der Ergebnisse zu den Schätzungen	
7.2 Der 2	Zusammenhang zwischen Höhe und Varianz des geschätzten Alters	. 51
	Varianzfaktoren des geschätzten Alters	
	Problemstellung	
7.3.2	Testplan	54
7.3.3	Hypothesen	54
7.3.4	Testwahl	54
7.3.5	Testanwendung	54
7.3.6	Interpretation	. 62
7.3.7	Zusammenfassung	. 62
7.4 Verg	eleich der chronologischen Alterswerte mit den geschätzten	. 62
	Problemstellung	
7.4.2	Prüfung des Zusammenhangs zwischen dem chronologischen Alter und den Varianzen o	der
	Sprechbedingungen	
	Prüfung des Zusammenhangs zwischen dem chronologischen Alter und dem perzeptiver	
	einzelnen Sprechbedingungen	
	Varianzfaktoren der akustischen Parameter	
	Problemstellung	
	Hypothesen	
	Testwahl	
	Ergebnisse	
	Interpretation	. 69
	elation des chronologischen und des perzeptiven Alters mit den akustischen	
Parametern		. 69
	Problemstellung	
7.6.2	Hypothesen	. 69
	Testwahl und Vorgehensweise	
	Ergebnisse	
7.6.5	Interpretation	72
8 Diskussi	on der Ergebnisse	. 76
8.1 Die s	schwerpunktmäßig behandelten stimmlichen Korrelate des Alterns	. 76
8.1.1	Die Artikulationsrate als Korrelat des geschätzten Alters	76
8.1.2	Die Amplitudenstandardabweichung als Korrelat des chronologischen Alters	76
8.1.3	Spektrales Rauschen als Korrelat des geschätzten Alters	76
8.2 Uner	wartete Ergebnisse	. 76
8.2.1	Intensität des F0-Tremors	. 76
8.2.2	Anwendbarkeit der Maße zur Untersuchung angehaltener Vokale bei freier Rede	77
8.3 Weit	ere Vergleiche mit Ergebnissen aus der Literatur	. 77
	Grundfrequenz	
8.3.2	Auswirkungen des Rauchens	78
	Genauigkeit der Hörerschätzungen	
8.4 Deut	ung des Einflusses der Vokalart auf die Güte der Schätzungen	. 78
8.5 Das	Verhältnis zwischen Korrelaten des chronologischen Alters und des perzeptiven	
Alters 79		
	verändern sich nun die Stimmen von Frauen mit zunehmendem Alter?	79
	gkeiten/ Probleme dieser Untersuchungen	
	onenbezogene Daten der Sprecherinnen	
	ität der Aufnahmen	
	verständliche Hörtestanleitung	
	meterextraktion	
	Automatische Gewinnung akustischer Größen zur Stimmbeschreibung	
	Bestimmung der gesprochenen Silben	
	ationen für weitere Arbeiten	
	eitere Auswertungsmöglichkeiten der Daten dieser Untersuchung	
	Verbesserung der Extraktionsfehler von MDVP	
10 1 2	Untersuchung des Einschwingvorgangs	82

10.1.3	Bestimmung der Relevanz des Ausschwingvorgangs	82
10.1.4	Erhebung von Maßen zur Artikulationsbeschreibung	
10.1.5	Erhebung der intrapersonellen Variabilität bzgl. verschiedener Perturbationsmaße	83
10.1.6	Erweiterter Perzeptionstest	
10.1.7		
10.2	Fragestellungen, die zusätzliche Aufzeichnungen von Stimmen erfordern	84
10.2.1	Überprüfung der Verlässlichkeit der Aufnahmen	84
10.2.2	Erhöhung der Validität	
10.2.3	Relevanzprüfung gefundener Parameter durch Resynthese	85
III. Anhan	g	86
	eraturverzeichnis	
	ellen	
12.1	Übereinstimmung der Altersschätzungen	
12.1.1	Kennwerte der Altersschätzungen pro Beispiel	
12.1.2	Kennwerte der Schätzungen für die einzelnen Sprecherinnen	
12.1.3	Kennwerte der Schätzungen für die Sprechbedingungsgruppen	
12.1.4		
12.2	Die Faktoren der Altersschätzungen.	
12.2.1	Akzent als Faktor	100
12.2.2	Rauchverhalten und Sprachstimulustyp als Faktoren (Multivariater mehrfaktorieller Te	est
nach d	em ALM)	101
12.2.3		
12.2.4		
zusami	mengefassten Sprechstimulustypen	
12.3	Nicht normalverteilte akustische Parameter	104
12.4	Varianzfaktoren der akustischen Parameter	105
12.5	Mittelwerte der Parameter	110
12.6	Korrelationen der Alterswerte mit den akustischen Parametern	
12.6.1	/a/-Anfang	
12.6.2	/a/-Mittelteil	112
12.6.3	/i/-Anfang	113
12.6.4	/i/-Mittelteil	
12.6.5	/u/-Anfang	115
12.6.6	/u/-Mittelteil	116
12.6.7	Text	117
12.6.8	Bild	118
13 Nie	derschrift der ausgewählten Abschnitte freier Sprechweise	.119
	t- und Bildstimulus, Hörtestformular	

Einleitung

Einander unbekannte Menschen können sich nur aufgrund ihrer Stimmen, also z.B. am Telephon, ein Bild davon machen, wie alt ihr Gegenüber ist. Ziel der Arbeit ist es, erklären zu helfen, welche Merkmale der Stimme es sind, die das Alter einer Sprecherin preisgeben. Diese Arbeit soll auch der Frage nachgehen, wie genau das Alter über die Stimme vermittelt werden kann, ob das über die Stimme vermittelte Alter dem chronologischen Alter entspricht, oder ob es systematisch davon abweicht. Des Weiteren soll ermittelt werden, welche Umstände die Wahrnehmung des Alters durch die Stimme beeinflussen, speziell, ob Rauchen die Stimme älter macht, ob Dialekt einen Einfluss auf die Alterswahrnehmung hat und auch wie viel gesagt werden muss, bevor das Alter gut eingeschätzt werden kann.

Diese Arbeit beschäftigt sich also mit der Frage, wie sich Stimmen mit zunehmendem Alter verändern und wodurch die Veränderung durch das Alter beeinflusst, verlangsamt oder beschleunigt wird. Es werden nur die Stimmen von Frauen untersucht, da sie sich von männlichen Stimmen wesentlich unterscheiden und bislang nicht so ausführlich erforscht wurden

Die Methoden dieser Untersuchung sind die akustische Analyse von Sprachbeispielen unterschiedlich alter Frauen und die Schätzung des Alters dieser Sprecherinnen durch mehrere Hörer anhand der akustisch analysierten Sprachbeispiele. Die akustische Analyse der Stimme zielt darauf ab, einige der Merkmale der Stimme, an welche die altersrelevante Information geknüpft ist, zu bestimmen. Die perzeptive Beurteilung der Stimme dient dazu, neben dem chronologischen Alter der sprechenden Person eine zweite Beurteilungsebene zu schaffen, an der die akustische Analyse angelehnt werden kann. Das ist notwendig, da offensichtlich Unterschiede zwischen dem chronologischen Alter und dem wahrgenommen Alter auftreten können. Es wird also sowohl das chronologische Alter als auch das wahrgenommene Alter einer Sprecherin ermittelt und untersucht, welche akustischen Parameter mit der einen und der anderen Form des Alters zusammenhängen.

Diese Arbeit ist Teil der naturwissenschaftlichen Erforschung gesprochener Sprache, deren Ergebnisse z.B. in der forensischen Sprechererkennung, im klinischen und im sprachtechnologischen Bereich Einzug finden.

Die vorliegende Arbeit ist in drei große Abschnitte gegliedert. Der erste Abschnitt liefert die theoretischen Grundlagen und eine Zusammenfassung des Forschungsstandes zum Themengebiet Alter und Stimme. Im zweiten Abschnitt werden die eigenen Untersuchungen beschrieben, die Ergebnisse dargestellt und diskutiert, Probleme der Untersuchung dargelegt und Vorschläge für aufbauende Untersuchungen unterbreitet. Im dritten Teil finden sich das Literaturverzeichnis, die Tabellen und Ergebnisausgaben, die zu umfangreich sind, um sie im zweiten Teil einzubinden, sowie die Sprechstimuli und das Hörtestformular.

An dieser Stelle möchte ich nochmals allen Sprecherinnen und allen Hörern danken. Ohne ihre Unterstützung wäre diese Arbeit nicht zustande gekommen. Ich bitte um Nachsicht, dass nicht alle 69 Mitwirkenden namentlich genannt werden.

I. THEORETISCHER TEIL

1 Theorien über das Altern

Das Anliegen dieser Arbeit ist, zu bestimmen wie sich Stimmen durch das Altern verändern. Es geht also um die Bestimmung von Zusammenhängen zweier Konstrukte. Unter "Stimme" ist nach einhelliger Meinung das akustische Signal zu verstehen, das Menschen mit Hilfe ihres Sprechapparats erzeugen können. "Altern" dagegen entzieht sich bislang einer umfassenden Erklärung¹, obwohl jeder Mensch eine Vorstellung davon hat und obwohl es mit der Gerontologie einen Wissenschaftszweig gibt, der sich mit Alterungsvorgängen beschäftigt.

Die triviale Definition ist, dass (menschliches) Altern der Prozess ist, der mit der Geburt (wenn man es genau nimmt, mit der Zeugung) beginnt und mit dem Tod endet.² (Chronologisches) Alter ist demzufolge die Zeit³, die seit der Geburt vergangen ist. Soweit herrscht die wissenschaftlichen Disziplinen übergreifender Konsens.

Doch bereits die Frage, ob Alter nicht besser als chronologisches Alter zu bezeichnen ist, also ob es noch andere Formen des Alters gibt, oder ob es sinnvoll ist, andere Formen des Alters anzunehmen, spaltet die Geister in unterschiedliche Lager. Das Bedürfnis, andere Formen des Alterns zu postulieren, erwächst innerhalb der theoretischen Gerontologie aus dem Wunsch, Aussagen wie "Die sieht aber älter aus, als sie sich benimmt." wissenschaftlich zu ergründen.

Solche Aussagen sind allgemein bekannt, was impliziert, dass für alle Menschen Altern kein einheitliches Konzept ist, sondern sich in beliebig viele Unterkonzepte – wie Altern der optischen Erscheinung und Altern des Verhaltens – deren Ausprägungen miteinander vergleichbar sind, aufspalten lässt. Demzufolge kann auch angenommen werden, dass jeder Mensch ein Konzept vom Altern der Stimme hat. Sonst würden Aussagen wie "Sie haben aber eine jugendliche Stimme…" nur Unverständnis hervorrufen.

Wozu aber ist es notwendig, ein Konzept "Stimmalter" einzuführen, wenn es darum geht, zu bestimmen wie sich Stimmen mit dem Alter verändern? Das Stimmalter ist das Konzept, das als notwendiges Bindeglied fungiert, wenn die Zusammenhänge der verschiedenen Größen, die im experimentellen Teil dieser Arbeit erhoben werden, dargelegt werden sollen.

Die erhobenen Größen sind chronologisches Alter, Schätzungen des chronologischen Alters sowie akustische Parameter, die die Grundlage der Schätzungen näher beschreiben. Um also zu klären, was diese Größen nun eigentlich messen, wie sie sich beeinflussen, durch welche Faktoren diese Einflüsse gestört werden und durch welche die Messungen, ist es sinnvoll, die Einfluss- als auch Störgrößen und deren Wirkungen zu benennen und in Beziehung zu setzen.

-

¹ "However, a complete explanation of aging awaits comprehensive crossdisciplinary efforts incorporating all aspects of the aging process." (**Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 14)

² "The basic definition of age mentioned by Schroots & Birren is that age is the time elapsed since birth. This is called chronological age." aus **Uffink**, J. (2000): *Time and Ageing: a physicist's look at gerontology*. http://www.phys.uu.nl/~wwwgrnsl/jos/publications/aging.htm

³ Der Einwand, dass auch die Zeit nicht absolut ist, also für unterschiedliche Personen unterschiedlich schnell vergeht – abhängig von der Geschwindigkeit mit der man sich bewegt – kann außer Acht gelassen werden. Bisher hat es niemand geschafft, sich so schnell zu bewegen, dass die aus der Bewegung entstehende Verlangsamung der Zeit der Rede wert wäre, geschweige denn, merklichen Einfluss auf den Alterungsprozess hätte.

Aus der Gliederung der Gerontologie in ihre wissenschaftlichen Teildisziplinen, lässt sich eine geeignete Struktur ableiten, um mögliche Einflussbereiche bzgl. des Alterns zu erfassen: Dementsprechend gibt es biologische, psychische und soziokulturelle Einflüsse auf das menschliche Altern.

Um diese Einflüsse genauer bestimmen zu können, folgt ein kurzer Exkurs zu den Alterstheorien⁴ der jeweiligen Teildisziplinen der Gerontologie, dann eine Definition des Stimmalters. Den Abschluss des Kapitels bildet eine Darstellung des Zusammenhangs der erhobenen Merkmale mit den Einfluss- und Störfaktoren und der beteiligten Systeme durch ein Informationsflussmodell.

Zunächst folgt eine allgemeine Definition der Begriffe Altern und Alter, aus denen die spezifischeren Definitionen abgeleitet werden: (Menschliches) Altern ist der Prozess der Veränderung des Menschen zwischen seiner Zeugung und seinem Tod. Alter ist die Information über einen Zustand während dieser Veränderung.

1.1 Biologisches Altern

Biologische Theorien des Alterns versuchen die Ursache des Alterns zu ergründen. Dabei gibt es zwei gegensätzliche Hauptrichtungen. Bereits in einem frühen Sammelband (Cowdry (1939))⁵ werden deren Positionen in einer für die Gerontologie zentralen, bis heute unbeantworteten Frage formuliert: Ist Altern das Ergebnis eines degenerativen Prozesses oder ist Altern eine natürliche Entwicklung bar jeglicher spezieller pathologischer Erscheinung? Theorien, denen die letztgenannte Überzeugung zugrunde liegt, führen Altern auf genetische oder hormonelle Ursachen zurück. Die prominentesten Theorien, die Altern als Akkumulation ungünstiger Umstände betrachten, sind wohl die "wear and tear theory" vertreten von Whitbourne (1996)⁶ und die Theorie der freien Sauerstoffradikale, z.B. vertreten durch Clark (1999).⁷

Biologisches Altern ist der Prozess der langfristigen Veränderung des biologischen Systems Mensch. Unter biologischem Alter soll im Folgenden die Summe der Informationen über einen Zustand im Verlauf dieses Prozesses verstanden werden.

Einflüsse des biologischen Alters auf die Stimme ergeben sich daraus, dass das stimmerzeugende Organ, der Stimmapparat, ein Teil des menschlichen Körpers ist und dadurch den selben biologischen Prozessen unterliegt wie der restliche Körper.

1.2 Psychisches Altern

Viele der psychologischen Alterstheorien erklären die Veränderung kognitiver Prozesse mit dem Alter. Diese betreffen hauptsächlich die Art und die Geschwindigkeit des

⁴ eine ausführlichere, reichlich referenzierte Darstellung von Alterstheorien findet sich bei **Linville** (2001), S. 1-17

⁵ "either aging is the result of degenerative processes or aging is a natural progression devoid of any particular pathology." nach **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego S 2.

⁶ nach **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 6

⁷ nach **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 7

Denkens und des Abrufes von Gedächtnisinhalten. Darüber hinaus gibt es Theorien die sich mit Persönlichkeit bzw. Identität während des Alterungsprozesses befassen, wobei widersprüchliche Theorien bestehen. McCrae & Costa (1990)⁸ vertreten beispielsweise die Auffassung, dass sich die Persönlichkeit eines Erwachsenen nicht verändert. Andere (Erikson (1982), Whitbourne (1996)) sind der Auffassung, dass sich während des Verlaufs des Lebens sowohl die Persönlichkeit als auch das Selbstbild ändert. Birren & Schroots (1996) prognostizieren durch ihre Theorie der Gerodynamik (der Begriff verdeutlicht die Anlehnung an die Theorie der Thermodynamik⁹) sogar eine Zunahme der Variabilität der Persönlichkeit mit zunehmendem Alter.

Psychisches Altern ist der Prozess der langfristigen Veränderung des kognitiven Systems Mensch und der Persönlichkeitsstrukturen. Unter psychischem Alter soll im folgenden die Summe der Informationen über einen Zustand im Verlauf dieses Prozesses verstanden werden.

Einflüsse des psychischen Alters auf die Stimme wirken über die kognitive Steuerung der Bewegungsabläufe der Stimmerzeugung. Einflüsse der menschlichen Psyche, die sich mit der Wirkung des psychischen Alters überlagern, sind emotionale Zustände sowie Einflüsse der Aufmerksamkeit und der Motivation.

1.3 Soziokulturelles Altern

"[Culture] is generally defined in terms of shared basic value orientations and beliefs and by habits of living that are held in common." (Luborsky & McMullen (1999))¹⁰ Die Kultur formt soziale Beziehungen, persönliche Erfahrungen und die Lebensumstände eines Individuums. Die Kultur hat also direkten Einfluss auf die Psyche eines Individuums und über die Umwelt auch auf dessen biologisches System.

Soziokulturelles Altern ist der Prozess der langfristigen Veränderung der kulturellen Normen mit denen sich ein Mensch konfrontiert sieht. Unter soziokulturellem Alter soll im folgenden die Summe der Informationen über die kulturellen Normen bzgl. der Verhaltensweisen in verschiedenen Lebensabschnitten verstanden werden.¹¹

Z.B. wäre "ältere Menschen Sprechen langsamer" eine solche Information, die sich auf die Psyche einer Sprecherin in der Weise auswirken könnte, dass sie schneller spricht, weil sie nicht für alt gehalten werden will. Eine direkte Einwirkung des soziokulturellen Alters auf einen beurteilenden Hörer könnte zur Folge haben, dass er das Alter tendenziell unterschätzt, da es sich nicht schickt, andere Personen älter zu schätzen als sie sind.

⁸ nach Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 9

⁹ **Uffink** (2000) legt dar, dass die Erklärung des Alterns von **Schroots & Birren** durch Zunahme der thermodynamischen Entropie im System Mensch aus physikalischer Sicht nicht haltbar ist.

¹⁰ nach Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 9

¹¹ vgl. **Uffink** (2000): [...] social ageing, which is defined as the process of social role change and behaviour in mature adults in a direction expected and displayed by others in a society."

1.4 Theorien vom Altern der Stimme

Hollien $(1987)^{12}$ stellt ein Modell vor, nach dem Unterschiede der altersabhängigen Veränderungen der Stimme zwischen Mann und Frau durch hormonelle Differenzierung während der Pubertät und hormonelle Angleichungen während des restlichen Lebensablaufs erklärt werden.

Ein weiteres Modell¹³ führt den Großteil altersbedingter Veränderungen der Stimme auf zwei Faktoren zurück: den Rückgang der Gewebeelastizität und die Schwächung der Muskeln. Die Versteifung des Brustkorbes und die Schwächung der Atemmuskulatur erschweren das Ein- und Ausatmen und führen zu verminderter Leistungsfähigkeit.

Vermehrte Steifheit der Stimmlippen und die Schwächung der Muskeln, die an der Stimmbildung beteiligt sind, führen zu verschlechterter Kontrolle der Position der Stimmlippen und der Bewegungsabläufe, die Gtimme erzeugen, was sich auf die Tonhöhe, die Stimmstabilität, die Lautstärke und den Rauschanteil der Stimme auswirkt.

Die Schwächung der Muskulatur und Versteifung des Gewebes erklärt auch altersabhängige Veränderungen der Artikulation: Die verlangsamte und schlechter koordinierte Interaktion der Artikulatoren führt zu verringerter Sprechgeschwindigkeit und ungenauerer Artikulation.

Ein solches Modell verbindet auch die größere Variabilität altersrelevanter Stimmmerkmale innerhalb der Gruppe der Älteren im Vergleich zur Gruppe der Jungen mit der größeren Variabilität der allgemeinen Fitness unter den Alten: Wenn man in Betracht zieht, dass sich die muskulären und geweblichen Veränderungen nicht nur auf den Sprechapparat reduzieren, sonder den gesamten Körper betreffen, dann ist ein starker Zusammenhang zwischen stimmlichen Merkmalen und Merkmalen des allgemeinen körperlichen Zustandes anzunehmen. Und der allgemeine körperliche Zustand variiert bei älteren Personen stärker als bei jungen.

Die Stimme wird nach diesen Modellen nur durch den physiologischen Zustand des Stimmapparates beeinflusst.

1.5 Konstruktdefinition: "Stimmalter"

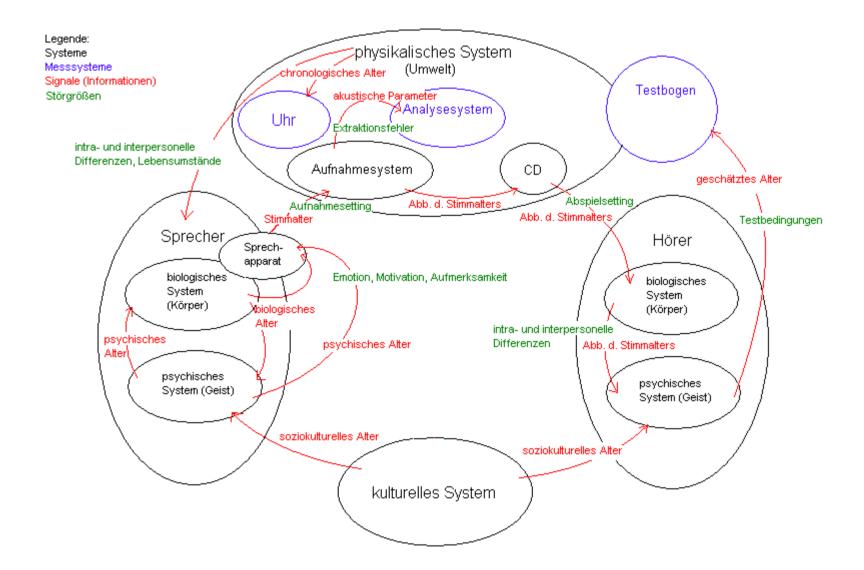
Stimmliches Altern ist der Prozess der langfristigen Veränderung des biologischen Teilsystems Sprechapparat. Unter "Alter der Stimme" oder "Stimmalter" soll im folgenden die Summe der Informationen im akustischen Signal über einen Zustand im Verlauf dieses Prozesses verstanden werden.

Veränderungen im Sprachsignal beruhen in erster Instanz auf physiologischen Veränderungen des Sprechapparats. Diese werden durch biologische (hier seien vor allem der allgemeine gesundheitliche Zustand als auch das Altern im biologische Sinne genannt) und psychische Faktoren bestimmt. Psychische Faktoren der stimmlichen Veränderung sind der emotionale Zustand, der Grad der Aufmerksamkeit und der Motivation, die kognitive Leistungsfähigkeit sowie Selbstkonzepte der Persönlichkeit bzw. der Identität.

¹³ vgl. **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 12 ff.

¹² nach **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 12

Die Selbstkonzepte entstehen durch Wechselwirkungen des Individuums mit seinem soziokulturellen Umfeld.


Dabei stellen der gesundheitliche Zustand, der emotionale Zustand, der Grad der Aufmerksamkeit und der der Motivation Störfaktoren des Stimmalters dar, da sie sich kurz- oder mittelfristig ändern können. Langfristige Veränderungen des Sprechapparates beruhen auf langfristigen biologischen, psychischen und soziokulturellen Veränderungen.

1.6 Zusammenfassung

Die messbaren Merkmale quantifizieren nicht Informationen über Veränderungen des Menschen als Ganzes und nur des Menschen, sondern über die Veränderungen von Teilsystemen oder übergeordneten oder autarken Systemen. Das heißt, will man die Bedeutung gemessener Merkmale für das Konstrukt Alter einschätzen, muss zunächst der Ursprung und der Weg der Information, die über die jeweiligen Merkmale quantifiziert wird, bestimmt werden. Unter 1.7 findet man eine schematische Darstellung dieses Informationsflussmodells. Es soll ermöglichen die drei unterschiedlichen Datensorten der folgenden Untersuchung – chronologische Alterswerte, geschätzte Alterswerte und akustische Parameter – miteinander in Beziehung zu setzen.

1.7 Informationsflussmodell

Das Diagramm auf der nächsten Seite ist eine Zusammenfassung der theoretischen Überlegungen zu einem Modell darüber, welche Informationen in der folgenden Untersuchung gemessen werden und welche Störfaktoren zu berücksichtigen sind. Es zeigt die verschiedenen Systeme, die Einfluss auf die Messgrößen dieser Untersuchung haben sowie die altersrelevanten Signale bzw. den Austausch altersrelevanter Information zwischen den Systemen, als auch die Ansatzpunkte einiger Störgrößen. Unterscheidung zwischen Störeinflüssen und relevanten Informationen standpunktabhängig, also arbiträr. Über die unterschiedlichen Sprechbedingungen, die im experimentellen Teil untersucht werden, lässt sich die Informationsmenge des Stimmalters beeinflussen. Die Darstellung hat keinen Anspruch auf Vollständigkeit: es können viele weitere Systeme, Untersysteme und Signale postuliert werden.

2 Physische Veränderungen des Sprechapparats und deren Auswirkungen auf die Spracherzeugung

2.1 Einführung

Alle an der Spracherzeugung beteiligten Organe haben neben der Sprachproduktion noch andere Funktionen. So dient z.B. die Zunge dem Schmecken, also der Nahrungsselektion, der Kehlkopf dem Verschluss der Atemwege bei der Nahrungsaufnahme, die Lunge der Sauerstoffaufnahme. Der Sprechapparat ist also kein einheitliches Organ, das nur der Erzeugung von Sprache dient. Vielmehr stellt die Möglichkeit der Spracherzeugung evolutionsgeschichtlich eine Neuheit dar. Keiner Affenart ist es möglich zu sprechen. Ungeachtet ihrer Intelligenz, verfügen sie nicht über die anatomischen Voraussetzungen, um Sprache in der Form zu produzieren, wie wir es tun.

Diejenigen Organe, die an menschlicher Spracherzeugung beteiligt sind, also der Sprechapparat, können in drei Gruppen unterteilt werden, nämlich in die Lunge, den Kehlkopf samt Stimmlippen und das Ansatzrohr.

2.2 Die Lunge und der Brustkorb

Die Lunge übernimmt bei der Spracherzeugung die Funktion der Energiequelle. Sie wandelt Muskelkraft in die komplementären Energien des Drucks und der Bewegung der Luft. Bei normaler Atmung vergrößert sich das Lungenvolumen durch Muskelkontraktion. Dadurch entsteht in der Lunge relativ zur Außenwelt ein Unterdruck. Um diesen auszugleichen, strömt Luft durch die geöffnete Glottis in die Lunge. Löst sich die Muskelkontraktion, dann verringert sich das Lungenvolumen. Der entstehende Überdruck presst Luft aus der Lunge.

Die Lungen älterer Menschen sind kleiner, leichter und weniger elastisch als die jüngerer Personen. Der Brustkorb wird zunehmend steifer, was dazu führt dass er sich nur unter größerem muskulärem Aufwand dehnen lässt. Die Muskeln werden mit zunehmendem Alter aber schwächer. Die Auswirkungen dieser Veränderungen mit dem Alter sind erschwertes, häufigeres Atmen, wobei pro Atemzug weniger Luft bewegt wird und der subglottale Druck nicht mehr im gleichen Maße aufgebaut werden kann, wie in jungen Jahren.

2.3 Kehlkopf und Stimmlippen

Beim Ausatmen ohne zu sprechen, wie auch bei der Bildung stimmloser Laute bleibt die Glottis geöffnet. Bei der Erzeugung stimmhafter Laute modulieren die Stimmlippen den ausgeatmeten Luftstrom. D.h. sie unterbrechen ihn in (mehr oder weniger) regelmäßigen Abschnitten – bei Frauen ca. 170 bis 400 mal in der Sekunde. Dadurch entstehen unmittelbar über der Glottis Luftdruckänderungen, die sich physikalisch als Schwingungen, als quasiperiodische Veränderung des Luftdrucks über die Zeit beschreiben lassen. "Quasiperiodisch" ist gerade für eine Arbeit über stimmliche Merkmale des Alterns

Die ein wichtiges Stichwort. geringfügigen Abweichungen, welche die Schwingungszyklen der Stimme im gegenseitigen Vergleich aufweisen, sind nicht nur ein Merkmal der Natürlichkeit einer Stimme – automatisch erzeugte Stimmen klingen nicht zuletzt deshalb künstlich, weil sie diese Unregelmäßigkeiten nicht aufweisen. Mit zunehmendem Alter werden diese Unregelmäßigkeiten größer und Luftdruckschwankungen, deren einzelne Perioden in zunehmendem Maße voneinander in Dauer und Intensität abweichen. Die Unregelmäßigkeiten der Stimmlippenschwingungen, wie auch ein erhöhter Grad und eine größere Anzahl unvollständiger Glottisverschlüsse, erzeugen eine Zunahme unmoduliert ausströmender Luft, was sich in einem höheren Rauschanteil des Signals niederschlägt.

Die Veränderungen im Schwingungsverhalten der Stimmlippen mit zunehmendem Alter begründen sich durch Versteifung und Elastizitätsverlust der Stimmlippen sowie der Muskeln, die für die Stellung der Stimmlippen zueinander verantwortlich sind, als auch durch eine Verknöcherung der Kehlkopfknorpel.

2.4 Das Ansatzrohr

Außer den oben beschriebenen Veränderungen senkt sich der Kehlkopf mit zunehmendem Alter ab, wodurch der Resonanzraum über der Glottis, das Ansatzrohr, verlängert wird. Dies führt unter anderem zu einer Absenkung der Formantfrequenzen. Minimal unterstützt wird die Vergrößerung des Resonanzraumes durch das fortgesetzte Wachstum der Gesichtsknochen. Die Gesichtsmuskulatur unterliegt ebenso wie die Zunge einem Elastizitätsverlust und allgemeinem Schwund mit der Folge einer Abschwächung der Muskelkraft. Verschliffene, undeutlichere und langsamere Artikulation ist aber zu größeren Teilen der zunehmend schlechter werden den Koordination der Artikulatoren zuzuschreiben, verursacht durch neuronale Veränderungen.

3 Veränderungen des Sprachsignals

3.1 Akustische Korrelate des chronologischen Alters

Einige akustische Größen wurden bereits als potentielle Korrelate des Alters erkannt und z.T. bestätigt. Dazu gehören v.a. die Grundfrequenz, deren Standardabweichung, Jitter, Sprechintensität, deren Variationsbreite und Standardabweichung, Shimmer, der Geräuschanteil bei der Phonation, die Formantfrequenzen und die Sprechrate. Allerdings zeigen bisherige Untersuchungen geschlechtsspezifische Differenzen, sowohl hinsichtlich der Frage, wie sich diese Größen mit dem Alter verändern, als auch hinsichtlich der Frage, ob Größen, die für ein Geschlecht als relevant erkannt wurden, beim anderen sich ebenfalls mit dem Alter signifikant ändern. Frauen wurden bisher weniger ausführlich untersucht.

3.1.1 Grundfrequenz

Der bisher wohl am genauesten untersuchte Parameter, die Grundfrequenz, sinkt nur bei Frauen mit zunehmendem Alter stetig, wobei sich ein markanter, wahrscheinlich hormonell bedingter Abfall um das 50. Lebensjahr abzeichnet. Bei Männern zeigt sich nach einem zunächst steileren Abfall ab etwa dem fünfzigsten Lebensjahr ein erheblicher Anstieg.¹⁴

3.1.2 Intensität

Bezüglich der Intensität lässt sich festhalten, dass die maximal erzeugbare Lautstärke bei der Vokalproduktion unabhängig vom Geschlecht mit dem Alter sinkt. ¹⁵ Morris und Brown konnten außerdem nachweisen, dass ältere Frauen Vokale nicht mehr so leise produzieren können wie jüngere. Männer wurden diesbezüglich noch nicht untersucht.

Bei der Produktion zusammenhängender Sprache jedoch sprechen Männer über 70 normalerweise lauter, auch wenn sie nicht schlechter hören. ¹⁷ Morris & Brown ¹⁸ stellten bei Frauen keine altersbezogenen Veränderungen der Sprechintensität bei der Produktion zusammenhängender Sprache fest.

3.1.3 Maße der Stabilität von Grundfrequenz und Intensität

Mit zunehmendem Alter sinkt die Fähigkeit, Bewegungen flüssig und kontrolliert ablaufen zu lassen. Bezüglich der Sprachproduktion drückt sich das unter anderem in zunehmenden Unregelmäßigkeiten im Schwingungsverhalten der Stimmlippen aus, was wiederum zu erhöhten Instabilitäten im akustischen Signal führt.

¹⁴ Linville, Sue Ellen (2000): *The aging voice*. in: Voice Quality Measurement [Hrsg.: Kent, Raymond D. und Ball, Martin J.]; Singular Thomson Learning, San Diego, S. 362

Ptacek, P., Sander, E., Maloney, W. & Jackson, C. (1966): Phonatory and related changes with advanced age. in: Journal of Speech and Hearing Research, 9, 353-360 und Morris, R. & Brown, W. (1987): Age-related voice measures among adult women. Journal of Voice, 1, 38-43

¹⁶ Morris, R. & Brown, W. (1987): Age-related voice measures among adult women. Journal of Voice, 1, 38-43

¹⁷ Ryan, W. (1972): Acoustic aspects of the aging voice. in: Journal of Gerontology, 27, 265-268

¹⁸ **Morris**, R. & **Brown**, W. (1994): *Age-related differences in speech intensity among adult females*. Folia Phoniatrica et Logopaedica, 46, 64-69

Bereits etablierte Maße solcher Instabilitäten sind Jitter und Shimmer. Sie beschreiben die Variabilität bezüglich Dauer bzw Intensitätsamplitude Schwingungszyklusses im Vergleich zum nächsten. Genau hier liegt wahrscheinlich auch das Problem, diese Maße zur Unterscheidung des Stimmalterns zu verwenden. Sie reflektieren Veränderungen in Zeitfenstern, die zur Stimmalteruntersuchung wahrscheinlich zu klein sind. Zwar wurde in vielen Untersuchungen bestätigt, dass auch die durch Jitter und Shimmer gemessenen Instabilitäten mit dem Alter zunehmen, allerdings wurden auch einige Faktoren entdeckt, die diese Maße zumindest als Korrelat des Alters nicht uneingeschränkt verlässlich erscheinen lassen: Jitter und Shimmer korrelieren hoch mit Empfindungsgrößen wie z.B. "Rauhigkeit" oder auch "Heiserkeit". Die Rauhigkeit der Stimme steht aber eher mit Krankheit im Zusammenhang (die natürlich im Alter auch zunimmt), als mit Alter an sich. Bestätigend hierfür sind v.a. die Untersuchungen von Orlikoff¹⁹ und Ramig²⁰, welche nahe legen, dass unterschiedliche Jitterwerte mit dem Alter hauptsächlich auf Variabilitäten der Gesundheit bzw. der Fitness zurückführen sind. Dies gilt allerdings nicht für Shimmer, was dieses Maß zur Altersbestimmung geeigneter erscheinen lässt, auch wenn dies durch die Wahrnehmung nicht zu begründen ist. Weitere Kritikpunkte an Jitter und Shimmer sind deren Abhängigkeit vom Analysesystem²¹, von der mittleren Grundfrequenz²², als auch vom mittleren Schalldruck²³. Die Untersuchungen von Orlikoff und seinen Mitarbeitern, in denen die letztgenannten Störvariablen kontrolliert wurden, liefert folgende Ergebnisse: Die Gruppe älterer Männer zeigte erhöhte Jitter- und Shimmerwerte, als auch erhöhte Varianzwerte dieser beiden Maße. Trotzdem stellt Linville²⁴ fest: "Firm conclusions as to the effect of aging on jitter and shimmer levels are not now possible."

Auch die Standardabweichungen der Grundfrequenz und der Intensität reflektieren Perturbationen der Stimme, allerdings über einen größeren Zeitraum. "Voices displaying progressive increases in frequency followed by progressive decreases might sound tremulous or "shaky", as opposed to rough or hoarse. Indeed, vocal tremor is one vocal characteristic listeners have labeled as typical of voices judged as old."²⁵ Dadurch scheinen diese Maße zur Altersunterscheidung besser geeignet als Jitter und Shimmer. Aus den Untersuchungen von Linville & Fisher²⁶ und von Orlikoff²⁷ ergibt sich im Vergleich junger

_

¹⁹ **Orlikoff**, R. (1990): *The relationship of age and cardiovascular health to certain acoustic characteristics of male voices*. in: Journal of Speech and Hearing Research, 33, 450-457

Ramig, L. (1983): Effects of physiological aging on vowel spectral noise. in: Journal of Gerontology, 38, 223-225 und Ramig, L. (1983): Effects of physiological aging on speaking and reading rate. in: Journal of Communication Disorders, 16, 217-226 und Ramig, L. & Ringel, R. (1983): Effects of physiological aging on selected acoustic characteristics of voice. in: Journal of Speech and Hearing Research, 26, 22-30

²¹ **Bielamowicz**, S. **et al.** (1996): *Comparison of voice analysis systems for perturbation measurement.* in: Journal of speech and hearing research, 39, 126-134

Orlikoff, R. & Baken, R. (1990): Consideration of the relationship between the fundamental frequency of phonation and vocal jitter. in: Folia Phoniatrica (Basel), 42, 31-40
 Orlikoff, R. & Kahane, J. (1991): Influence of mean sound pressure level on jitter and shimmer measures.

Orlikoff, R. & Kahane, J. (1991): Influence of mean sound pressure level on jitter and shimmer measures. in: Journal of Voice, 5, 113-119

²⁴ Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 175

²⁵ **Linville**, Sue Ellen (2000): *The aging voice*. in: Voice Quality Measurement [Hrsg.: Kent, Raymond D. und Ball, Martin J.]; Singular Thomson Learning, San Diego, S. 367

²⁶ Linville, Sue Ellen & Fisher, H. (1985): Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females. in: Journal of the Acoustical Society of America, 78, 40-48

Erwachsener mit Alten ein um das Doppelte erhöhter s(F0)-Wert bei Männern und ein Anstieg um 71 % bei Frauen. Auch die Variationsbreite dieser Werte in den beiden Altersgruppen zeigt sich bemerkenswert unterschiedlich, für beide Geschlechter. "That is, some young speakers are able to phonate at F0 SD stability levels that no elderly speaker can duplicate. On the other hand, jitter measures have been reported to overlap extensively, especially in women (Linville & Fisher, 1985; Orlikoff, 1990)."

Auch die Varianz der Amplitudenwerte zeigt sich in der Gruppe der alten Männer stark erhöht.²⁹ Eine entsprechende Untersuchung für Frauen wurde bisher offenbar nicht durchgeführt.

3.1.4 Spektrales Rauschen

Als spektrales Rauschen bezeichnet man unmodulierte aperiodische Energie im Vokalspektrum, die die akustische Manifestation turbulenter Strömungen ist. Diese wiederum werden wahrscheinlich hervorgerufen durch unvollständige Glottisverschlüsse und/oder Unregelmäßigkeiten der Glottisfunktion, also unter anderem durch die selben physiologischen Ursachen, denen auch Erhöhungen der Perturbationsmaße zugeschrieben werden. Erhöhtes spektrales Rauschen lässt sich lt. Ramig³⁰ zumindest bei Männern wohl eher mit schlechterer physiologischer Verfassung als mit fortgeschrittenem Alter an sich in einen Zusammenhang bringen.

3.1.5 Sprechrate

"Numerous studies have demonstrated that elderly persons speak at a slower rate than do younger adults." "Elderly speakers are 20%-25% slower than young adults when speaking at their normal speaking rate." Die Verlangsamung der Sprechrate gründet auf Dauerverlängerungen von Vokalen, Konsonanten, Atempausen, sowie auf einer Häufung der Atempausen.

Außerdem zeigen ältere Personen eine um 55 % erhöhte Variabilität ihrer Sprechgeschwindigkeit.³³

Der Großteil der Untersuchungen der Sprechgeschwindigkeit konzentrierte sich allerdings auf männliche Sprecher. Die wenigen Untersuchungen weiblicher Sprechgeschwindigkeit sind widersprüchlich: So konnten Brown et al.³⁴, Oyer & Deal³⁵ und Smith et al.³⁶ eine

³³ **Benjamin**, B. (1997): *Speech production of normally aging adults*. in: Seminars in Speech and Language, 18, 135-141

²⁷ **Orlikoff**, R. (1990): *The relationship of age and cardiovascular health to certain acoustic characteristics of male voices*. in: Journal of Speech and Hearing Research, 33, 450-457

²⁸ siehe **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 176

²⁹ **Orlikoff**, R. (1990): The relationship of age and cardiovascular health to certain acoustic characteristics of male voices. in: Journal of Speech and Hearing Research, 33, 450-457

³⁰ **Ramig**, L. (1983): Effects of physiological aging on vowel spectral noise. in: Journal of Gerontology, 38, 223-225

³¹ Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 157

³² ebenda, S. 158

³⁴ **Brown**, W., **Morris**, R. & **Michel**, J (1989): *Vocal jitter in young and aged female voices*. in: Journal of Voice, 3, 113-119

³⁵ Oyer, E. & Deal, L. (1985): Temporal aspects of speech and the aging process. in: Folia Phoniatrica (Basel), 37, 109-112

Verringerung der weiblichen Sprechrate durch zunehmendes Alter feststellen, Hoit et al. ³⁷ aber nicht. So lässt sich vermuten, dass die Absenkung der Sprechrate mit dem Alter bei Frauen nicht so ausgeprägt ist, wie bei Männern.

3.1.6 Formantfrequenzen

Abhängig von der Form des Ansatzrohres verändern sich dessen Resonanzverhalten und damit die für die Vokalerkennung entscheidenden Formantfrequenzen. Hieraus ergeben sich zwei Hauptdeterminanten der Varianz der Formantfrequenzen: die Länge des Ansatzrohres und die Stellung der Zunge.

Aus den Untersuchungen von Benjamin³⁸, Rastatter & Jacques³⁹ und Liss et al.⁴⁰ ergibt sich zumindest für Männer eine mit dem Alter zunehmende Formant- und damit Vokalzentralisation, wahrscheinlich bedingt durch zunehmende Trägheit der Zunge.

Verursacht v.a. durch die Absenkung des Kehlkopfes, verlängert sich das Ansatzrohr mit zunehmendem Alter. Dementsprechend sollten sich die Formantfrequenzen mit dem Alter absenken. Bestätigt wurde dieser Zusammenhang durch Endres et al.⁴¹ in einer Longitudinalstudie mit zusammenhängender Sprache für sieben Vokale und zwei Diphthonge bei beiden Geschlechtern. Weitere Bestätigung erbrachten Linville & Fisher⁴², zumindest für den angehaltenen Vokal "ä", sowie Linville & Rens⁴³ durch eine Messung des Langzeitspektrums (LTAS), welches Spektren stimmhafter Laute über unterschiedliche Artikulationen hinweg mittelt und so Einflüsse der Länge des Vokaltraktes bestimmen lässt. Zunächst deuten die Daten auf größere altersbedingte Veränderungen der Länge des Ansatzrohres bei Frauen. Linville & Rens folgern hieraus eine für Frauen proportional größere Absenkung des Kehlkopfes, oder Wechselwirkungen Kehlkopfabsenkung und Zungenzentralisation bei Männern.

3.2 Akustische Korrelate des wahrgenommenen Alters

Auch die Merkmale, die Hörer nennen, wenn sie nach den typischen Eigenschaften alter Stimmen gefragt werden, knüpfen entweder an die Phonation oder an die Artikulation an. Artikulationsbezogene Merkmale alter Stimmen sind eine geringere Sprechrate, längere

³⁷ **Hoit**, J., **Hixon**, K., **Altman**, M. & **Morgan**, W. (1989): *Speech breathing in women*. in: Journal of Speech and Hearing Research, 32, 353-365

³⁹ **Rastatter**, M. & **Jacques**, R. (1990): Formant frequency structure of the aging male and female vocal tract. in: Folia Phoniatrica (Basel), 42, 312-319

⁴⁰ Liss, J., Weismer, G. & Rosenbeck, J. (1990): Selected acoustic characteristics of speech production in very old males. in: Journal of Gerontology: Psychological Sciences, 45, P35-P45

⁴¹ Endres, W., Bambach, W. & Flösser, G. (1971): Voice spectrograms as a function of age, voice disguise, and voice imitation. Journal of the Acoustical Society of America, 49, 1842-1847

⁴² Linville, Sue Ellen & Fisher, H. (1985): *Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females.* in: Journal of the Acoustical Society of America, 78, 40-48

⁴³ **Linville**, Sue Ellen & **Rens**, J. (2001): *Vocal tract resonance analysis of aging voice using long-term average spectra*. in: Journal of Voice, 15

³⁶ Smith, B., Wasowicz, J. & Preston, J. (1987): Temporal characteristics of the speech of normal elderly adults. in: Journal of Speech and Hearing Research, 30, 522-529

Benjamin, B. (1982): Phonological performance in gerontological speech. in: Journal of Psycholinguistic Research, 11, 159-167 und Benjamin, B. (1997): Speech production of normally aging adults. in: Seminars in Speech and Language, 18, 135-141

Sprechpausen, vermehrte Anzahl von Sprechpausen und unpräzisere Artikulation. Phonatorische Manifestationen einer alt empfundenen Stimme sind eine geringere Tonhöhe, vermehrte Heiserkeit oder Rauhigkeit, größere Angestrengtheit, Tremor, vermehrte Behauchung und geringere Lautstärke.⁴⁴

3.2.1 Grundfrequenz

Weibliche Stimmen werden älter geschätzt, wenn sie eine tiefere Grundfrequenz aufweisen. Dies gilt lt. Linville & Fisher⁴⁵ zumindest für Beurteilungen aufgrund einzeln gesprochener Vokale. Männer, deren Stimmen höhere Grundfrequenz aufweisen, werden als älter beurteilt. Allerdings wurden keine signifikanten Unterschiede der Grundfrequenz in männlichen Stimmen gefunden, deren Sprecher als jung gegenüber mittleren Alters wahrgenommen wurden.⁴⁶

Interessant ist v.a., dass unabhängig vom Sprechergeschlecht eine tiefere Stimme als Merkmal von Stimmen älterer Personen genannt wurde.⁴⁷

3.2.2 Maße der Stabilität von Grundfrequenz und Intensität

Obwohl Jitter und Shimmer mit wahrgenommenen Stimmqualitäten wie Rauhigkeit und Heiserkeit korrelieren⁴⁸ und Rauhigkeit sowie Heiserkeit als Merkmale von Stimmen älterer Personen genannt wurden⁴⁹, steht Jitter in weiblichen Stimmen nach Linville & Fisher⁵⁰ nicht im Zusammenhang mit dem wahrgenommenen Alter.

Andere Perturbationsmaße, die größere Zeitabschnitte als nur von einer Schwingungsperiode zur nächsten in die Berechnung miteinbeziehen, scheinen treffender zur Beschreibung des wahrgenommenen Alters: So können Linville & Fisher⁵¹ für weibliche Stimmen, als auch Shipp et al.⁵² für männliche, feststellen, dass Stimmen älter empfunden werden, wenn die Standardabweichung ihrer Grundfrequenz erhöht ist. Des weiteren bemerkte Ramig⁵³ anhand einer Untersuchung einzeln produzierter Vokale erhöhte Werte der Intensitätsvariabilität (der Standardabweichung des Koeffizienten der Variation) in Stimmen männlicher Sprecher, die älter beurteilt wurden.

19

⁴⁴ siehe Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 190

⁴⁵ **Linville**, Sue Ellen & **Fisher**, H. (1985): *Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females*. in: Journal of the Acoustical Society of America, 78, 40-48

⁴⁶ **Shipp**, T., **Qi**, Y., **Huntley**, R. & **Hollien**, H. (1992): *Acoustic and Temporal Correlates of perceived age*. in: Journal of Voice, 6, 211-216

⁴⁷ **Ptacek**, P., **Sander**, E. (1966): *Age recognition from voice*. in: Journal of Speech and Hearing Research, 9, 273-277

⁴⁸ Deal, R. & Emanuel, F. (1978): Some waveform and spectral features of vowel roughness. in: Journal of Speech and Hearing Research, 21, 250-264 und Liberman, P. (1963): Some acoustic measures of the fundamental periodicity of normal and pathologic larynges. in: Journal of the Acoustical Society of America, 35, 344-353

⁴⁹ **Hartman**, D. E. (1979): *The perceptual Identity and Characteristics of Aging in Normal Male Adult Speakers*. in: Journal of Communication Disorders. 12, 53-61

Linville, Sue Ellen & Fisher, H. (1985): Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females. in: Journal of the Acoustical Society of America, 78, 40-48
 ebenda

⁵² **Shipp**, T., **Qi**, Y., **Huntley**, R. & **Hollien**, H. (1992): *Acoustic and Temporal Correlates of perceived age*. in: Journal of Voice, 6, 211-216

⁵³ Ramig, L. (1986): Aging speech: Physiological and sociological aspects. in: Language and Communication, 6, 25-34

Umgangssprachliche Annäherungen an diese Maße werden in den Begriffen "Tremor", "Wabern", "Flatterigkeit" vermutet.

3.2.3 Sprechrate

Männliche Sprecher werden älter geschätzt, wenn sie eine geringere Sprechrate, mehr und längere Atempausen aufweisen.⁵⁴ Frauen wurden diesbezüglich noch nicht untersucht. Ein weiteres Wahrnehmungsphänomen im Zusammenhang mit der Sprechrate neben Tempo scheint "Lebhaftigkeit" zu sein.

3.2.4 Spektrales Rauschen

Spektrales Rauschen wird als akustischer Indikator für die Wahrnehmungsgrößen Heiserkeit und Behauchtheit (engl. breathiness) herangezogen. Da diese Phänomene ihrerseits von Hörern als Merkmale alter Stimmen genannt wurden, liegt die Vermutung nahe, spektrales Rauschen könne auch ein Indikator des wahrgenommenen Stimmalters sein. Untersucht und bestätigt wurde dieser Zusammenhang bislang nur für männliche Sprecher und nur durch das Betrachten von Spektrogrammen. ⁵⁵

3.2.5 Formantfrequenzen

Linville & Fisher⁵⁶ konnten einen Zusammenhang zwischen abgesenkten Formantfrequenzen des einzeln geflüsterten Vokals "ä" weiblicher Stimmen und dem wahrgenommenen Alter der Sprecherinnen feststellen. Dieser Zusammenhang ließ sich bei stimmhafter Erzeugung des Vokals nicht mehr bestätigen. Erhebungen aus zusammenhängender Sprache sind nicht bekannt.

_

⁵⁴ Shipp, T., Qi, Y., Huntley, R. & Hollien, H. (1992): Acoustic and temporal correlates of perceived age. in: Journal of Voice, 6, 211-216

⁵⁵ Ramig, L. (1986): Aging speech: Physiological and sociological aspects. in: Language and Communication, 6, 25-34

⁵⁶ **Linville**, Sue Ellen & **Fisher**, H. (1985): *Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females*. in: Journal of the Acoustical Society of America, 78, 40-48

3.3 Zusammenfassende Tabelle

Die folgende Tabelle entstand aus den Tabellen "11.1 Vocal characteristics considered by listeners as typical of "old" voices" (S. 190) und 11.4 "Acoustic correlates of vocal age in speakers perceived as "old" (S. 194) von Linville (2001). Diese wurden von mir zu einer Tabelle zusammengefasst und um die Spalten "akustische Korrelate des Alters" sowie "mögliche Adjektive zur Beschreibung der Korrelate" als auch um mögliche *zusätzliche Maße* erweitert.

akustische Korrelate des Alters		akustische Korrelate de Alters	s wahrgenommenen	Charakteristika alter Stimmen	mögliche Adjektive zur Beschreibung	
Männer	Frauen	Männer	Frauen	(nach der Einschätzung von Laien)	der Korrelate bzw. der Charakteristika des Alters	
F0 höher	F0 tiefer	F0 höher	F0 tiefer	F0 tiefer	tiefer	
Variationsbreite der F0: Verringerung des Maximalwertes ab ca. 65	Variationsbreite der F0: - geringe Ausdehnung nach unten (nach der Menopause) - Verringerung des Maximalwertes ab ca. 65					
Zusammenhang mit Jitter nicht geklärt	nicht geklärt	keine Daten verfügbar	Jitter unkorreliert!	vermehrte Rauhigkeit/	rauher, heiserer, krächzender,	
Shimmerwerte höher	keine Daten verfügbar			Heiserkeit/ vermehrte "Angespanntheit" (engl. strain)	angestrengter	
s[Gruppe](Jitter) größer	keine Daten verfügbar				[von Person zu	
s[Gruppe](Shimmer) größer	keine Daten verfügbar				Person] unterschiedlicher heiser, rau,	
s[individuell](Jitter) keine Daten verfügbar	s[individuell](Jitter) keine Daten verfügbar	s[individuell](Jitter) keine Daten verfügbar	s[individuell](Jitter) keine Daten verfügbar		krächzender, brüchiger,	
s[individuell](Shimmer) keine Daten verfügbar	s[individuell](Shimmer) keine Daten verfügbar	s[individuell](Shimmer) keine Daten verfügbar	s[individuell](Shimmer) keine Daten verfügbar		sprunghafter	

Intensitätsmittelwert höher bei (normalhörenden) Männern über 70	Keine Unterschiede			geringere Lautstärke	leiser
Variationsbreite der Intensität (von Vokalen): - Verringerung des Maximalwertes - Minimalwert nicht	Variationsbreite der Intensität (von Vokalen): - Verringerung des Maximalwertes				nicht mehr so laut und nicht mehr so leise
untersucht	- Angehobener Minimalwert				
Tremormaße keine Daten verfügbar s(F0) höher s(A) höher	Tremormaße keine Daten verfügbar s(F0) höher keine Daten verfügbar	Tremormaße keine Daten verfügbar s(F0) höher s(A) [bzw. s("coefficient of variation")] höher	Tremormaße keine Daten verfügbar s(F0) höher keine Daten verfügbar		flatteriger, wabernder, angestrengter
s[individuell](s(F0)) keine Daten verfügbar s[individuell](s(A)) keine Daten verfügbar	s[individuell](s(F0)) keine Daten verfügbar s[individuell](s(A)) keine Daten verfügbar	s[individuell](s(F0)) keine Daten verfügbar s[individuell](s(A)) keine Daten verfügbar	s[individuell](s(F0)) keine Daten verfügbar s[individuell](s(A)) keine Daten verfügbar		brüchiger, sprunghafter
Soft Phonation Index keine Daten verfügbar	Soft Phonation Index keine Daten verfügbar	Soft Phonation Index keine Daten verfügbar	Soft Phonation Index keine Daten verfügbar	"Angespanntheit"	angestrengter
spektrales Rauschen unkorreliert	keine Daten verfügbar	spektrales Rauschen höher (lt. "visueller Beurteilung")	keine Daten verfügbar	vermehrte Behauchung (engl. breathiness)	heiserer, behauchter, pfeifender
F1 und F2 tiefer	F1 und F2 tiefer	keine Daten verfügbar	F1 und F2 tiefer [bei einzeln geflüstertem /ä/]		dunkler, dumpfer
geringere Sprechrate s[individuell](Sprechrate) höher	nicht eindeutig geklärt nicht eindeutig geklärt	geringere Sprechrate keine Daten verfügbar	keine Daten verfügbar keine Daten verfügbar	geringere Sprechrate	langsamer, müder "tempovariierender", schleppender
mehr Atempausen längere Atempausen	nicht eindeutig geklärt nicht eindeutig geklärt	mehr Atempausen längere Atempausen	keine Daten verfügbar keine Daten verfügbar	vermehrtes Zögern längere Pausen	zögerlicher
Lautzahlminderungs- koeffizient keine Daten verfügbar	Lautzahlminderungs- koeffizient keine Daten verfügbar	Lautzahlminderungs- koeffizient keine Daten verfügbar	Lautzahlminderungs- koeffizient keine Daten verfügbar	ungenauere Artikulation	lallender, verschliffener, ungenauer

4 Die Genauigkeit von Altersschätzungen

Faktoren, die die Genauigkeit von Altersschätzungen aufgrund der Stimme beeinflussen können, sind der Dialekt bzw. Soziolekt und das Alter der Sprecher, das Alter der Hörer, die Antwortneigung der Hörer und die Menge der stimmlich dargebotenen Information. Natürlich gelingt es auch besser, eine Stimme einer von zwei Altersgruppen (jung oder alt) zuzuordnen, als das genaue Alter in Jahren zu schätzen – die Trefferquote steigt mit der Größe der Zielkategorien, von z.B. 51% bei einer Kategorisierung zwischen jung, mittel und alt auf 78% bei der Unterscheidung zwischen jung und alt.⁵⁷

4.1 Die Menge der Information

Die zu erwartende Genauigkeit der Hörerschätzungen ist abhängig von der Art der dargebotenen Stimuli, sinkt von gelesenen Äußerungen zu einzeln dargebotenen Vokalen, also mit Abnahme der zur Verfügung stehen den Information. Hörer können lt. Ptacek & Sander⁵⁸ einzeln dargebotene Vokale mit einer Genauigkeit von 78% einer von zwei Altersgruppen (jung und alt) richtig zuordnen. Rückwärts gehörte gelesene Texte wurden mit 87% Trefferquote richtig zugeordnet, vorwärts gehörte mit 99%. Doch sogar wenn Vokale geflüstert werden, also auch noch ohne jegliche phonatorische Information, erweisen sich richtige Zuordnungen als überzufällig.⁵⁹

In dieser Arbeit wird untersucht, ob Vokalanfänge und –Mittelteile eine unterschiedliche Menge an altersrelevanter Information tragen, sowie ob zwischen verschiedenen Vokalarten ein solcher Unterschied besteht, und ob frei gesprochene Äußerungen noch mehr über das Alter der Sprecherin preisgeben als gelesene.

4.2 Das Alter der Hörer

Aus Untersuchungen von Linville & Korabic⁶⁰ sowie Huntley et al.⁶¹ geht hervor, dass junge und mittelalte Erwachsene, im Alter von ca. 20 bis ca. 50 Jahren das Alter genauer schätzen können, als heranwachsende und ältere Menschen.

4.3 Das Alter der Sprecher

Unabhängig vom Alter des Hörers werden die Stimmen junger Menschen genauer erkannt, (öfter als jung eingestuft) als die Stimmen alter Menschen (als alt eingestuft werden). Zu

⁵⁸ **Ptacek**, P., **Sander**, E. (1966): *Age recognition from voice*. in: Journal of Speech and Hearing Research, 9, 273-277

⁵⁹ **Linville**, Sue Ellen & **Fisher**, H. (1985): *Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females*. in: Journal of the Acoustical Society of America, 78, 40-48

⁶⁰ **Linville**, S. E. & **Korabic**, E. (1986): *Elderly listeners' estimates of vocal age in adult females*. in: Journal of the Acoustical Society of America, 80, 692-694

⁶¹ **Huntley**, R, **Hollien**, H. & **Shipp**, T. (1987): *Influences of listener characteristics on perceived age estimations*. in: Journal of Voice, 1, 49-52

⁵⁷ vgl. Linville (2001), S. 191 ff.

diesem Ergebnis kommen die Untersuchungen von Hollien & Tolhurst⁶², Jacques & Rastatter⁶³ und Neiman & Applegate.⁶⁴ Mögliche Erklärungen hierfür sind einerseits die Neigung der Hörer, im Zweifelsfall lieber jünger als älter zu schätzen. Vielleicht, weil es gesellschaftlich bedingt unangenehmer ist, jemanden zu alt zu schätzen als zu jung.

Der Effekt könnte aber auch allein darauf zurückzuführen sein, dass die Merkmale der Stimme, die altersrelevante Information tragen, bei alten Menschen stärker variieren. D.h., umso älter eine Gruppe von Menschen wird, desto höher weichen die Altersschätzungen innerhalb dieser Gruppe voneinander ab, woraus folgt, dass chronologisch alte Sprecher öfter und in größerem Ausmaß jünger geschätzt werden als chronologisch junge Sprecher älter.

4.4 Der Dialekt/ Soziolekt des Sprechers

Auch der Dialekt bzw. Soziolekt einer Sprecherin wirkt sich auf artikulatorische Merkmale der Stimme aus. So ist z.B. die Sprechgeschwindigkeit, und die Artikulationsgenauigkeit unter Umständen Ausdruck der Sprechweise einer sozialen oder örtlich gebundenen Gruppierung. Da diese Merkmale aber auch mit dem Alter einhergehen, beeinflussen Dialekt- und Soziolektunterschiede auch die Alterswahrnehmung.⁶⁵

-

⁶² **Hollien**, H. & **Tolhurst**, G. (1978): *The aging voice*. in: Transcripts of the Seventh Symposium Care of the Professional Voice [Hrsg. Weinberg, B]; The Voice Foundation, New York, S. 67-73

⁶³ **Jacques**, Richard D. & **Rastatter**, Michael P. (1990): Recognition of speaker age from selected acoustic features as perceived by normal young and older listeners. Folia Phoniatrica, 42, 118-124

⁶⁴ Neiman, G. & Applegate, J. (1990): Accuracy of listener judgments of perceived age relative to chronological age in adults. in: Folia Phoniatrica (Basel), 42, 327-330

⁶⁵ Näheres hierzu, v.a. zum Vergleich schwarzer und weißer amerikanischer Sprecher, findet sich bei Linville, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 193, wie auch bei Xue, A. & Fucci, D. (2000): *Effects of race and gender on acoustic features of voice analysis*. Perceptual and Motor Skills, 91, 951-958 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/mdvp.jpms.PDF)

II. EXPERIMENTELLER TEIL

5 Zielsetzung, Schwerpunkt der Untersuchung

Sue Ellen Linville weist in ihrem Aufsatz "The Aging Voice" auf noch ausstehende Aspekte der Untersuchung des Alterns der Stimme hin: "Studies have not been conducted correlating age estimates to speech rate in female speakers." Amplitude SD in female speakers with aging has yet to be investigated." In ihrem 2001 erschienenen Buch findet sich der Hinweis: "Also, research is necessary to examine spectral noise as a correlate of perceived age estimates from women's voices." Ausgehend von diesen Hinweisen, soll der Schwerpunkt dieser Arbeit auf der Erhebung der Sprechrate, der Amplitudenstandardabweichung und des spektralen Rauschens bei erwachsenen Frauen liegen.

Um diese akustischen Parameter bestimmen zu können, sollen Sprechbeispiele von Frauen verschiedenen Alters unter drei unterschiedlichen Bedingungen aufgezeichnet werden: während spontaner Sprechweise, während der Produktion eines vorgegebenen Satzes und bei der Produktion einzelner, anhaltend phonierter Vokale (/a/, /i/ und /u/). Aus den Vokalen werden jeweils Anfangs- und Mittelstücke gleicher Länge ausgeschnitten. So entstehen also insgesamt acht verschiedene Stimmbeispielgruppen. Diese sollen in einem Wahrnehmungstest gehört und von den Hörern unter der Vorgabe, das chronologische Alter der Sprecherin zu schätzen, beurteilt werden.

Die verschiedenen Stimmbeispiele werden dann einer akustischen Analyse durch ein Sprachverarbeitungsprogramm unterzogen, welches verschiedene, die Phonation (die Stimmerzeugung durch die Stimmlippen) beschreibende Parameter aus den Beispielen extrahiert. Außerdem werden bei den Redebeispielen die Pausen bestimmt und die Silben gezählt um daraus die Sprechgeschwindigkeit zu berechnen.

Da das Analyseprogramm in einem Arbeitschritt mehrere Parameter ausgibt, wird daraus eine Auswahl der Parameter getroffen, die sich mit dem Alter verändern könnten. Darunter sind Maße der Stimmstabilität, der spektralen Energieverteilung, der Tonhöhe und spezielle Tremormaße. Die Tremormaße wurden bisher scheinbar noch nicht im Zusammenhang Alter und Stimme erhoben.

⁶⁸ Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 197

⁶⁶ **Linville**, Sue Ellen (2000): *The aging voice*. in: Voice Quality Measurement [Hrsg.: Kent, Raymond D. und Ball, Martin J.]; Singular Thomson Learning, San Diego, S.372

⁶⁷ ebenda, S.364

6 Methoden

Eine Langzeitstudie mit immer wieder den selben Sprecherinnen, die immer wieder dasselbe sagen, ohne ihre Stimme zu verstellen, regelmäßig mit immer wieder den gleichen technischen Geräten ohne Rauschen und Störgeräusche aufgenommen, wäre optimal, um eben nur den Faktor Alter als einzige Variable der Datengrundlage festzumachen. Da sich eine Magisterarbeit aber innerhalb eines zeitlichen Rahmens erstellt werden muss, der von dem einer Langzeitstudie weit entfernt ist, sollen in dieser Untersuchung die Stimmen von Personen verschiedenen Alters erhoben werden. Auch wenn dadurch die Kontrolle von Störgrößen, die auf personellen Unterschieden basieren, erheblich erschwert wird, ist es wohl der einzig praktikable Weg um Daten zu erhalten, die Unterschiede reflektieren sollen, die durch das Verstreichen von ca. 50 Jahren entstanden sind.

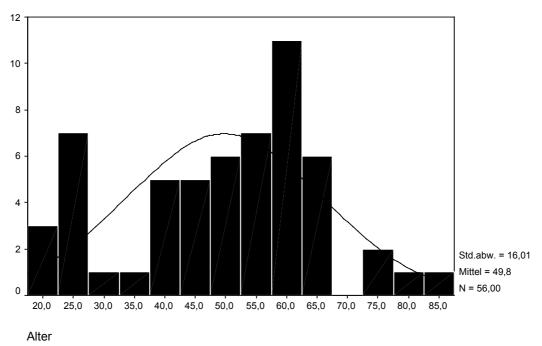
Eine andere methodische Herangehensweise, Stimmen unterschiedlichen Alters mit gleichbleibenden Persönlichkeitsmerkmalen zu erhalten, wäre die künstliche Veränderung der altersrelevanten Parameter. Um unterschiedliche Alterswahrnehmungen aufgrund der Stimme wirklich nur auf die Veränderung einzelner stimmbeschreibender Parameter zurückzuführen, ist es denkbar, die Parameter künstlich zu variieren und die Stimme mit jeweils einer Variation eines Parameters zu resynthetisieren. Die Konstruktion natürlich klingender, synthetisierter Sprachbeispiele ist allerdings aufwendig, v.a. wenn einzelne Parameter systematisch variiert werden sollen. Dazu wäre es sinnvoll, die relevanten Parameter zu kennen und am besten noch Anhaltspunkte für wahrnehmbare und realistische Größenordnungen der Varianz dieser Parameter zu haben. Da dies aber für viele potentiell relevante Größen noch nicht geklärt ist, kann diese Arbeit nur Teil der nötigen Vorarbeit einer genaueren Bestimmung akustischer Merkmale des Alterns durch Resynthese sein.

Die geplanten Untersuchungen lassen sich in folgende Teile gliedern:

- 1. Erhebung der Stimmen von erwachsenen Frauen verschiedenen Alters, sowie persönlicher Daten, die das Stimmalter beeinflussen könnten
- 2. Messung ausgewählter, als akustische Korrelate des Alters in Frage kommende, Parameter
- 3. Test der Wahrnehmung des Alters der erhobenen Stimmen
- 4. Prüfung der Zusammenhänge zwischen akustischen Parametern, dem wahrgenommenen Alter und dem chronologischen Alter der Sprecherinnen

6.1 Erhebung des Sprachmaterials

6.1.1 Die Sprecherinnen


Die Beschränkung dieser Untersuchung auf weibliche Sprecher begründet sich folgendermaßen: Da es bzgl. der Stimme erhebliche Unterschiede zwischen Männern und Frauen gibt, ist eine Gruppierung nach Geschlecht ohnehin erforderlich. Daher ist es sinnvoll, sich auf ein Geschlecht zu beschränken, um die Anzahl der Versuchspersonen aus Gründen der Durchführbarkeit so klein wie möglich zu halten. Die Beschränkung auf Frauen ergibt sich aus der Tatsache, dass Frauen bisher insgesamt weniger hinsichtlich des

Einflusses des Alters auf die Stimme untersucht wurden, bzw. hinsichtlich der Sprechrate, des spektralen Rauschens und der Amplitudenvariabilität nur unzureichend.

Insgesamt wurden die Stimmen von 56 Sprecherinnen im Alter von 20 bis 87 Jahren aufgezeichnet. Sie bilden die Datengrundlage dieser Arbeit. Das mittlere Alter beträgt 49,77 Jahre, die Standardabweichung 16,01 Jahre.

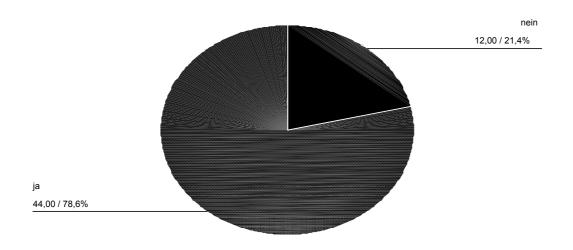
6.1.1.1 Die Verteilung des chronologischen Alters der Sprecherinnen

Da im Verlauf der statistischen Analysen das chronologische Alter der Sprecherinnen immer wieder als intervallskalierte Variable in Berechnungen einfließt, soll die Verteilungsform des chronologischen Alters innerhalb der Sprecherinnengruppe überprüft werden. Bei vielen statistischen Verfahren (allen, die nicht als verteilungsfrei, sondern als parametrisch bezeichnet werden) wird u.a. vorausgesetzt, dass die verrechneten Variablen normalverteilt sind. Die glockenförmige Linie im folgenden Diagramm zeigt die Umhüllende einer Normalverteilung; die Balken stellen die vorgefundene Verteilung der chronologischen Alterswerte dar.

Der optische Eindruck spricht nicht für eine normale Verteilung des chronologischen Alters. Aus diesem Grund wird ein Anpassungstest gerechnet, der die beobachtete Verteilung mit einer Normalverteilung vergleicht. Die Nullhypothese, die dieser Test prüft lautet: Die vorgefundene Verteilung unterscheidet sich nicht von einer Normalverteilung.

Kolmogorov-Smirnov-Annassungstest

Tromogorov Ommiliov / mpaccange		ALTER
N		56
Parameter der Normalverteilung	Mittelwert	49,77
	Standardabweichung	16,01
Extremste Differenzen	Absolut	,120
	Positiv	,101
	Negativ	-,120
Kolmogorov-Smirnov-Z		,898
Asympt. Signifikanz (2-seitig)		,396

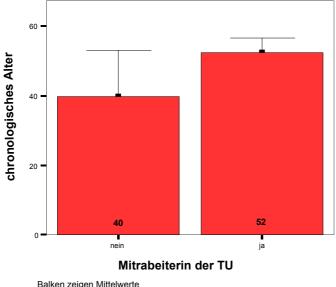

Die Verteilung der Alterswerte ist von einer signifikanten Abweichung von einer Normalverteilung weit entfernt. D.h. obwohl bekannt ist, dass Alter – zumindest in der mitteleuropäischen Bevölkerung – nicht normalverteilt ist, sondern rechtssteil, ist die Verteilung dieser Stichprobe einer Normalverteilung hinreichend ähnlich, um den mathematischen Voraussetzungen der im folgenden berechneten statistischen Verfahren zu genügen.

6.1.1.2 Die Auswahl der Sprecherinnen

Die Zielpopulation dieser Untersuchung, also diejenige Menge von Menschen, für welche die Ergebnisse der Untersuchung im Idealfall verallgemeinerbar sein sollten, sei die Gruppe aller erwachsenen Frauen. Um die Ergebnisse wirklich auf diese Gruppe erweitern zu können, müsste zunächst überprüft werden, ob die Altersverteilung der Stichprobe auch von der tatsächlichen Verteilung des Alters in der Grundgesamtheit nicht signifikant abweicht. Ferner wäre es erforderlich, dass die untersuchten Sprecherinnen zufällig aus der Gesamtheit dieser Gruppe ausgewählt würden.

Das Kriterium der "zufälligen" Auswahl bestand bei der Mehrzahl der aufgenommenen Sprecherinnen in Ihrer Tätigkeit als Sekretärin an der Fakultät I der TU Berlin. Ein Großteil der älteren Sprecherinnen sind Ex-TU-Mitarbeiterinnen. Die restlichen Sprecherinnen zeichnen sich dadurch aus, dass sie zu meinem Verwandten- und Bekanntenkreis zählen. Eine nicht zu vernachlässigende Zahl der Sprecherinnen spricht mit Akzent (elf bayrisch, zwei französisch, mindestens sechs berlinerisch⁶⁹).

Dass die Auswahl der Sprecherinnen im statistischen Sinn keine Zufallsstichprobe aus der Gesamtheit aller erwachsenen Frauen ist, steht also außer Frage. Bestenfalls ist sie als Klumpenstichprobe zu bezeichnen, streng gesehen nur als Ad-hoc-Stichprobe.



Das Kreisdiagramm zeigt die Aufteilung der Sprecherinnen nach ihrer (Ex-)Zugehörigkeit zur Gruppe der TU-Mitarbeiter.

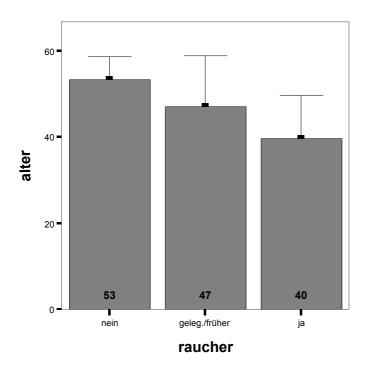
_

⁶⁹ Das Merkmal "Akzent" wurde nur von mir beurteilt und nicht durch einen Perzeptionstest überprüft.

Mehr als drei Viertel der Sprecherinnen sind oder waren TU-Mitarbeiterinnen, also beruflich mit einer geistigen Tätigkeit beschäftigt. Das mittlere Alter dieser Gruppe liegt mit 52 Jahren zwölf Jahre über dem mittleren Alter der restlichen Sprecherinnen.

Balken zeigen Mittelwerte


Fehlerbalken zeigen 95,0% Konfidenzintervall(e) des Mittelwerts


6.1.1.3 Das Rauchverhalten der Sprecherinnen

Ein Faktor, der nach der Erkenntnislage erheblichen Einfluss auf Stimmbildung zeigt, ist das Rauchverhalten der Sprecherinnen. 70 Bisherige Forschungsergebnisse sprechen dafür, dass die Stimmen rauchender Frauen älter klingen, als die Stimmen nicht rauchender des gleichen chronologischen Alters.

Die Verteilung des Rauchverhaltens über das Alter in der Sprecherinnengruppe zeigt dass mehr junge Frauen rauchen als alte, bzw. dass das durchschnittliche Alter der Raucher unter dem der Nichtraucher liegt. Wenn später überprüft wird, ob sich das Rauchverhalten auf die Alterwahrnehmung auswirkt, sollte die Verteilung Rauchverhaltens nicht unberücksichtigt bleiben.

⁷⁰ siehe u.a. Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 211, 171

Die Balken entsprechen den Mittelwerten des Alters in den jeweiligen Rauchergruppen; die Fehlerbalken zeigen das 95-prozentige Konfidenzintervall.⁷¹

⁷¹ Die Fehlerbalken sollten zur besseren Veranschaulichung eigentlich in den Balken die gleiche Distanz erfassen wie über den Balken. Beim Kopieren der Graphik von SPSS10.0 nach Word2000 verschwindet dieser Fehlerbalkenteil leider.

6.1.1.4 Relevanz der Sprechergruppen bzgl. des chronologischen Alters

Um die Wahrscheinlichkeit des Auftretens der gefundenen oder extremerer Gruppenunterschiede zu prüfen, soll an dieser Stelle ein statistischer Test der Gruppenmittelwerte berechnet werden. Sollen mehrere Einflussfaktoren (hier: Rauchverhalten, Berufsgruppe und Dialektgruppe) hinsichtlich der Signifikanz ihres Einflusses auf ein Merkmal (hier: chronologisches Alter) überprüft werden, empfiehlt es sich, alle möglichen Einflüsse in einem Verfahren zu testen.⁷² Ein Verfahren, das dies leistet, ist die univariate mehrfaktorielle Varianzanalyse. Alter ist die abhängige Variable, die Faktoren sind das Rauchverhalten, die Akzentart und die Möglichkeit der beruflichen Beschäftigung in der TU. ⁷³

Tests der Zwischensubjekteffekte

Abhängige Variable: chronologisches Alter

Quelle	Quadratsumme	df	Mittel der	F	Signifikanz
4.0.0.0	vom Typ III	4.	Quadrate	-	0.9
Korrigiertes	5856,786	14	418,342	2,087	,034
Modell					
Intercept	24747,708	1	24747,708	123,442	,000
AKZENT	765,496	3	255,165	1,273	,296
TU	1814,914	1	1814,914	9,053	,004
RAUCHER	652,054	2	326,027	1,626	,209
AKZENT * TU	14,811	1	14,811	,074	,787
AKZENT *	608,461	4	152,115	,759	,558
RAUCHER					
TU * RAUCHER	111,005	2	55,502	,277	,760
AKZENT * TU *	672,519	1	672,519	3,355	,074
RAUCHER					
Fehler	8219,714	41	200,481		
Gesamt	152680,000	56			
Korrigierte	14076,500	55			
Gesamtvariatio					
n					

a R-Quadrat = ,416 (korrigiertes R-Quadrat = ,217)

Wenn man das Signifikanzniveau bei 5% ansetzt, hat nur der Faktor TU-Zugehörigkeit überzufälligen Einfluss auf die Varianz der Alterswerte in der Stichprobe. Da diese Varianzanalyse aber die Mittelwerte sehr ungleichgroßer Untergruppen vergleicht⁷⁴, ist fragwürdig, ob die Vorraussetzungen für eine parametrische Varianzanalyse erfüllt werden.

⁷² Erstens reduziert dieses Vorgehen den nicht erklärbaren Anteil der Varianz zwischen den Merkmalswerten, zweitens wird damit auch die Relevanz der Wechselwirkungen zwischen den Faktoren berücksichtigt. Z.B. wäre es möglich, dass sich nur das Alter der Untergruppe der nicht der TU angehörenden, nicht rauchenden Sprecherinnen mit berliner Akzent von den rauchenden TU-Mitarbeiterinnen mit französischem Akzent überzufällig unterscheidet. Würden die Wechselwirkungen nicht in die Prüfung miteinbezogen, erhielte man als Ergebnis, dass sich die Faktoren nicht nachweislich auf das Merkmal auswirken.

⁷³ Die vollständigen Testergebnisse inkl. der Varianzhomogenitätsprüfung finden sich in der Datei "altverteil".

⁷⁴ Z.B. gibt es nur zwei Sprecherinnen mit französischem Akzent, eine Raucherin und eine Nichtraucherin was bestimmte Untergruppen auf eine Größe von N=1 reduziert. Andere Untergruppen, die Gelegenheitsraucher mit französischem Akzent, sind nicht vorhanden.

Aus diesem Grund soll der Einfluss der Faktoren mit nichtparametrischen Verfahren überprüft werden. Leider ist die Betrachtung des Einflusses mehrerer Faktoren auf eine rangtransformierte Variable erst kürzlich von Akritas et al. (1997)⁷⁵ zufriedenstellend gelöst worden, so dass es in SPSS noch keine Prozedur dafür gibt. Aus diesem Grund wird an dieser Stelle und bei späteren gleichartigen Problemstellungen auf einfaktorielle univariate Test zurückgegriffen.

Der Einfluss des Faktors TU-Zugehörigkeit wird mit dem U-Test von Mann-Whitney⁷⁶ geprüft, der Einfluss des Rauchverhaltens mit dem Trendtest von Jonkheere⁷⁷ und der des Akzents mit dem H-Test von Kruskal & Wallis⁷⁸.

Diese Tests bestätigen den Einfluss der TU-Zugehörigkeit (asymptotische Signifikanz p = 0,032) und das Fehlen des Einflusses unterschiedlicher Akzente (p = 0,569). Für das Rauchverhalten ergibt der verteilungsfreie Test allerdings eine Änderung gegenüber der mehrfaktoriellen Varianzanalyse: Der Trendtest legt mit p = 0,012 nahe, dass die Häufung der Raucher unter den jungen Sprecherinnen nicht zufällig ist.

Zusammenfassend kann man davon ausgehen, dass der unterschiedliche Akzent der Sprecherinnen innerhalb der Stichprobe keinen Einfluss auf die Varianz der Alterswerte hat. Bezüglich des Rauchverhaltens ist dem verteilungsfreien Test die größere Verlässlichkeit zuzuschreiben, weshalb in der weiteren Analyse beachtet werden muss, dass die jüngeren Sprecherinnen vermehrt rauchen.

Auch die Zugehörigkeit zur Gruppe der (Ex-)TU-Mitarbeiterinnen erweist sich als Faktor des chronologischen Alters, was eindeutig durch Schwächen der Sprecherinnenauswahl bedingt ist. Dennoch, die Zugehörigkeit zu einer bestimmten Berufsgruppe dürfte nicht an der Stimme zu erkennen sein.

Trotzdem hat diese Untersuchung alleine durch die Mängel der Sprecherinnenauswahl ohne Validierung durch andere gleichartige Untersuchungen nur explorativen Charakter. Und mit Sicherheit ist die Population, auf welche sich die Ergebnisse verallgemeinern lassen, nicht auf alle erwachsenen Frauen auszudehnen. So gibt es z.B. erhebliche kulturell bedingte Unterschiede zwischen den mittleren Grundfrequenzhöhen von Japanerinnen und Kontinentaleuropäerinnen. Dies dürfte nicht nur zu unterschiedlicher altersbedingter Stimmentwicklung führen, sondern beeinflusst auch die Extraktion verschiedener akustischer Parameter.⁷⁹

⁷⁶ Bortz, Jürgen & Lienert, Gustav A. (1998): Kurzgefaßte Statistik für die klinische Forschung. Springer, Heidelberg, S. 126 ff.

⁷⁵ nach **Bortz**, Jürgen & **Lienert**, Gustav A. (1998): Kurzgefaßte Statistik für die klinische Forschung. Springer, Heidelberg, S. 330

Portz, Jürgen & Lienert, Gustav A. (1998): Kurzgefaßte Statistik für die klinische Forschung. Springer, Heidelberg, S. 149 ff.

⁷⁸ **Bortz**, Jürgen & **Lienert**, Gustav A. (1998): *Kurzgefaβte Statistik für die klinische Forschung*. Springer, Heidelberg S.142 ff.

⁷⁹ siehe **Orlikoff**, R. & **Baken**, R. (1990): Consideration of the relationship between the fundamental frequency of phonation and vocal jitter. in: Folia Phoniatrica (Basel), 42, 31-40 sowie **Bielamowicz**, S. et al. (1996): Comparison of voice analysis systems for perturbation measurement. in: Journal of speech and hearing research, 39, 126-134

6.1.2 Qualität der Aufnahmen

Die Stimmen wurden mit einem tragbaren digitalen Tonbandgerät (Tascam DA-P1) und einem Headset-Mikrophon (AKG C-410) in unterschiedlichen, akustisch unbearbeiteten und nicht vermessenen Räumen (Büroräumen, Wohnzimmern etc.) aufgezeichnet.

6.1.2.1 Die räumliche Situation

Um in möglichst kurzer Zeit eine zur statistischen Auswertung ausreichende Menge unterschiedlicher Stimmen zu erhalten, wurde darauf verzichtet, die Aufnahmen in einem möglichst reflexionsarmen und schalldichten Raum zu erstellen. Dadurch kommt es zu Unterschieden der Aufzeichnungen, die nicht nur auf die Unterschiede der Stimme zurückzuführen sind. Die Sprachsignale überlagern sich durch Reflexionen im Raum mit sich selbst. Damit ist das Sprachsignal, das am Mikrophon anliegt, neben der Stimme der Sprecherin auch durch die Reflexionseigenschaften des Raums und durch die Position der Sprecherin im Raum beeinflusst. Vermutlich wirken sich diese Raumeffekte v.a. auf die Messungen der Amplitudenperturbation, sowie der Intensität des Amplitudentremors aus. Eine Beeinflussung der Altersschätzungen ist auch nicht auszuschließen. Ein weiterer Nachteil der gewählten Aufnahmesituation ist, dass die Räume nicht annähernd schalldicht weshalb auch Außengeräusche die Stimmaufnahmen stören. Voruntersuchung mit sieben Sprecherinnen wurde deshalb (auch) die gewählte Aufnahmeprozedur geprüft, mit dem Ergebnis, dass, trotz der nicht optimalen räumlichen Situation, Zusammenhänge zwischen akustischen Maßen (auch der Amplitudenstabilität) Alter und geschätztem Alter festgestellt werden konnten. Um trotzdem den Einfluss unterschiedlicher Räume mit unbekannten akustischen Eigenschaften auf die Ergebnisse dieser Untersuchung bestimmen zu können, bestand die Überlegung, diese Störeinflüsse durch wiederholte Aufnahmen der selben Sprecherinnen in einem optimaleren Raum zu kontrollieren. Ein solcher Raum stand aber nicht zur Verfügung.⁸⁰

6.1.2.2 Das Mikrophon

Das verwendete Mikrophon ist ein Miniatur-Kondensator-Mikrophon, das mit Hilfe einer speziellen Vorrichtung direkt am Kopf, mit einem Abstand von etwa 3,5 cm befestigt wird, so dass der Punkt des Kopfes mit dem geringsten Abstand zur Mikrophonmembran der linke Mundwinkel ist. Es wird von der Firma KAY Elemetrics, dem Hersteller des in dieser Untersuchung verwendeten Stimmanalysators, zur Stimmaufnahme empfohlen.⁸¹ Es sich durch eine sehr enge Charakteristik Lautstärkeempfindlichkeit gegenüber weiter entfernten Schallquellen ist sehr viel geringer als die des menschlichen Gehörs. Etwas vereinfacht gesagt, wird nur Schall von Quellen, die sehr nahe am Mikrophon sind (oder sehr lauter Schall) in elektrische Schwingungen gewandelt. Vorteilhaft ist das für die Aufnahmen dieser Untersuchung deshalb, weil dadurch sowohl der im Raum reflektierte als auch der Schall von außerhalb des Raumes

_

⁸⁰ Der reflexionsarme Raum der Technischen Akustik der TU Berlin wurde im Aufnahmezeitraum umgebaut. Geeignete Sprecherkabinen standen innerhalb der TU auch nicht zur Verfügung.

⁸¹ http://www.kayelemetrics.com/ProductInfo/Productpages/CSLOptions/CondenserMicModel4302/condmic.htm

weniger ins Gewicht fällt. Das Mikrophon reduziert den Störschall, also jeden Schall der nicht direkt vom Mund der Sprecherin abstrahlt.

Ein weiterer Vorteil es gewählten Mikrophons ist, dass durch dessen Nähe zum Mund auch der Signal-Rausch-Abstand relativ hoch ist. Der entscheidende Vorteil ist, dass durch die feste Anbringung am Kopf der Abstand während des Sprechens nicht verändert werden kann, wodurch Amplitudenschwankungen des elektrischen Signals, die durch eine Veränderung dieses Abstandes und nicht durch veränderte Lautstärke des Sprachsignals begründet sind, gar nicht entstehen. Solche geringfügigen Lautstärkeänderungen, etwa durch ein leichtes Drehen des Kopfes könnten sich entscheidend auf die Maße der Amplitudenperturbation auswirken, ohne dass der erzeugende Effekt am aufgezeichneten Signal erkennbar wäre.

6.1.2.3 Das Aufnahmegerät

Aufgenommen wurde das vom Mikrophon gewandelte akustische Sprachsignal mit einem digitalen Kassettenrecorder (Tascam DA-P1). Die erste Aufzeichnung liegt in Stereo, 16 Bit Samplingtiefe und einer Samplerate von 48 kHz vor, wobei aber nur einer der beiden Kanäle durch das Signal belegt ist, da das Mikrophon nur ein Monosignal bereitstellt. Das Mikrophon wurde vom Recorder mit einer Phantomspannung versorgt. Die Option der automatischen Lautstärkelimitierung war während aller Aufnahmen deaktiviert. Der Aufnahmepegel war für alle Aufnahmen unverändert (bei 4 von 10 möglichen Skalenpunkten).

6.1.3 Art des Sprachmaterials

Von jeder Sprecherin soll die Stimme unter drei verschiedenen Bedingungen aufgezeichnet werden, nämlich während spontaner Rede, der Produktion eines Satzes, der für alle Untersuchten gleich ist, und während der Produktion einzelner, angehaltener Vokale.

6.1.3.1 Vorüberlegungen

Die allgemeine Problematik Feld- vs. Laborexperiment betrifft auch diese Untersuchungen: Um die Unterschiedlichkeit der Stimmen nur auf Altersunterschiede zurückführen zu können, müssten alle Faktoren, die außer dem Alter den Klang der Stimme beeinflussen, entweder konstant gehalten oder miterhoben werden. Angenommen, man würde all diese Faktoren kennen, wäre es aber trotzdem fraglich, ob nicht alleine die Erhebung ihrer Ausprägungen das eigentlich zu messende Merkmal systematisch verfälscht.

Auf diese Untersuchung angewandt heißt das: Um vergleichbare Untersuchungsdaten zu erhalten, ist es notwendig, dass die Sprecherinnen möglichst gleiche Sätze produzieren. Hieraus erwächst die Notwendigkeit einen Satz oder einen kleinen Text vorzugeben, der abgelesen werden muss. Dies birgt jedoch die Gefahr, Artefakte zu erzeugen. Beispielsweise wäre denkbar, dass durch das Ablesen die Sprechrate reduziert wird, vor allem bei Frauen höheren Alters, die nicht mehr so gut sehen, und daraus dann gefolgert werden würde: "die Sprechrate sinkt mit steigendem Alter", anstatt korrekterweise: "die Leserate sinkt mit zunehmender Sehschwäche".

Um die Unterschiedlichkeit der Sprecherinnen, die durch das Lesen und nicht durch das Sprechen hervorgerufen werden, so gut wie möglich kontrollieren zu können, wird neben dem Lesen eines Textes auch frei gesprochene Sprache aufgezeichnet. Aus diesen Sprechbeispielen werden, soweit dies möglich ist, dieselben Parameter bestimmt, wie aus dem für alle Individuen gleichen Testsatz und aus den anhaltend phonierten Vokalen.

Besteht kein erheblicher Unterschied zwischen einem Parameter, der am gelesenen Text gemessen wird und dem gleichen Parameter, gemessen an der freien Rede, dann ist die Ausprägung dieses Parameters durch das Lesen nicht beeinflusst.

Ein weiteres Problem besteht darin, dass bei fortlaufender Sprache die Vokale zu kurz sind, als dass eine Berechnung aller Perturbationsmaße, v.a. derjenigen, die über einen größeren Zeitraum bestimmt werden, als auch der Tremormaße verlässlich wäre. Zum 55 Grundfrequenzperioden Beispiel **sAPO** (der über Amplitudenperturbationsquotient) bei einer mittleren Grundfrequenz von 250 Hz Signalabschnitte miteinander in Beziehung, die 0.22 s lang sind. Das entspricht in etwa der Länge eines Vokals in zusammenhängender Sprache. Das heißt, schneidet man einen solchen Vokal aus zusammenhängender Sprache aus, macht es keinen Sinn, daran sAPQ zu messen. Belässt man ihn in seinem ursprünglichen Kontext, dann wird er mit den nächsten 55 Perioden verglichen, egal ob dazwischen ein stimmloser Abschnitt ist und egal welcher Lautklasse diese nächsten 55 Perioden entnommen sind. Ob der Vergleich zweier Perturbationswerte, die an zusammenhängender Sprechweise erhoben wurden, etwas über die Relation des Alters ihrer Sprecherinnen auszusagen vermag, ist also fragwürdig. Die Möglichkeiten einen solchen Zusammenhangs zu deuten, sofern er sich zeigen sollte, sind beschränkt. Es sind aber lt. Linville gerade die Maße die über ein größeres Zeitfenster berechnet werden, die besonders gut auf das Alter der Sprecherin schließen lassen. Aus diesem Grund wurden als weitere experimentelle Bedingungen mehrere anhaltend gesprochene Vokale aufgenommen. Wagner⁸² setzt die Untergrenze der Dauer einer Vokalphonation für eine verlässliche Messung des Jitter-Index (Relative Average Perturbation) für Männer bei 120 ms an. MDVP benötigt zur Bestimmung der Tremormaße stimmhafte Signale mit einer Mindestdauer von 2 Sekunden. Für die Vokale /e/, /ɛ/, /a/ und /o/ zeigten sich bei Wagner⁸³ keine systematischen Unterschiede der Jitterwerte. In dieser Untersuchung werden mit den Vokalen /a/, /i/ und /u/ drei Eckvokale, also solche bei deren Produktion die Artikulatoren, v.a. die Zunge, extreme Positionen einnehmen, untersucht. Parameter, die über diese Vokale hinweg einheitlich sind, sind es wohl auch hinsichtlich aller anderen Vokale.

Alle Parameter, die an angehaltenen Vokalen gemessen werden können, können auch an zusammenhängender Sprache gemessen werden. Da zusammenhängende Sprache durch mehr Faktoren beeinflusst wird, also auch mehr (altersrelevante) Information trägt, ist es nur schwieriger, diese Information zu extrahieren, d.h. geeignete Maße zu finden, um der Fülle der Information gerecht zu werden. Die Parameter, die in dieser Untersuchung gemessen werden, wurden – mit Ausnahme der Artikulationsgeschwindigkeit – konstruiert

⁸² Wagner, I. (1995): A new jitter-algorithm to quantify hoarseness: an exploratory study. in: Forensic Linguistics, 2, 18-27

⁸³ Wagner, I. (1995): Jitter-measurements from telephone-transmitted speech.

um die Phonation zu beschreiben. Zusammenhängende Sprechweise ist somit sehr wahrscheinlich zu komplex, als dass diese Parameter die Information erfassen könnten.

Von den Sprecherinnen werden also Sprechbeispiele unter drei verschiedenen Bedingungen erzeugt, die sich durch die Menge der Information, die sie transportieren, unterscheiden. Je weniger Information ein Sprachbeispiel transportiert, desto leichter lässt sich diese Information durch die Messung von Parametern extrahieren und desto vergleichbarerer werden diese Parameter und damit auch die Sprachbeispiele über verschiedene Sprecher hinweg.

Folgende Arten von Sprachbeispielen werden von jeder Sprecherin aufgezeichnet:

6.1.3.2 Angehaltene Vokale

Die Aufforderung an die Sprecherinnen lautete sinngemäß: "Sprechen Sie bitte die Vokale /a/, /i/ und /u/, jeweils über einen Zeitraum von mindestens drei Sekunden in einer für Sie normalen Lautstärke und Tonhöhe. Und versuchen Sie bitte, die einmal gewählte Lautstärke und Tonhöhe über den Vokal konstant zu halten."

Die Forderung nach Konstanz der Tonhöhe und Lautstärke ist deshalb notwendig, weil die Perturbationsmaße und hier v.a. diejenigen, die über größere Zeitfenster bestimmt werden, also diejenigen, die vermutlich den stärksten Zusammenhang mit Alter zeigen, messen, wie gut es gelingt, die Stabilität in Tonhöhe und Lautstärke aufrecht zu erhalten.

Die Verrechnung der absoluten Perturbationsmaße mit der momentanen Tonhöhe bzw. der momentanen Lautstärke zu relativen Perturbationsmaßen, versucht die Perturbation unabhängig vom absoluten Wert der Tonhöhen bzw. Lautstärke darzustellen. Dabei ist ein Problem, dass z.B. die Tonhöhe bisher nicht fehlerfrei automatisch extrahiert werden kann, ein weiteres dass die Perturbationen nicht zwingend mit der absoluten Höhe linear zunehmen. Die Berechnungsalgorithmen für relative Perturbationsmaße sind aber so konstruiert, als würden die Perturbationen linear mit der absoluten Höhe der Frequenz bzw. der Intensität zunehmen.

Dennoch ist es der Natürlichkeit der Phonation auch nicht zuträglich, die Perturbationen nur absolut zumessen und dafür strikte Vorgaben bezüglich der zu sprechenden Tonhöhe und Lautstärke zu machen, da nicht jede Person gleich hoch und laut spricht.

Wie den Untersuchungen von Orlikoff & Baken bzw. von Orlikoff & Kahane⁸⁴ zu entnehmen ist, ist es deshalb optimal, die Sprecher in einer selbst gewählten Tonhöhe und innerhalb einer fest vorgegebenen Lautstärkevariationsbreite sprechen zu lassen. Die Sprecher müssten dann während der Phonation ein optisches Lautstärkemessgerät beobachten und versuchen, die Phonation so konstant wie möglich an einer Lautstärkemarke (zwischen 70 dB und 78 dB) zu halten. Da in dieser Untersuchung auch der (natürliche) Einschwingvorgang untersucht werden soll, scheint diese Vorgehensweise nicht angemessen.

113-119

-

⁸⁴ Orlikoff, R. & Baken, R. (1990): Consideration of the relationship between the fundamental frequency of phonation and vocal jitter. in: Folia Phoniatrica (Basel), 42, 31-40 sowie Orlikoff, R. & Kahane, J. (1991): Influence of mean sound pressure level on jitter and shimmer measures. in: Journal of Voice, 5,

6.1.3.3 **Gelesener Text**

Zur Erzeugung gelesener Rede wurde den Sprecherinnen der Textstimulus⁸⁵ vorgelegt, begleitet von folgender mündlicher Aufforderung: "Lesen Sie bitte nun diesen Text laut vor."

Der Text ist eine Wegbeschreibung, die von der Magisterarbeit von Silvia Weise⁸⁶ übernommen wurde. Der Vorzug einer Wegbeschreibung als Stimulus für eine Leseaufgabe liegt darin, dass in der Regel keine Emotionen mit einer Wegbeschreibung verbunden werden und auch keinerlei anderer Vorlese- oder Vortragsstil mit diesem Inhalt unmittelbar vereinbar ist. Das Lesen dieses Textes sollte also auch ohne explizite Aufforderung in neutraler Sprechweise geschehen. Ein weiterer Vorteil dieses Textes ist, dass durch kurze Sätze und durch den Einschub "ach nein, falsch" die Sprechpausen an der selben Stelle gemacht werden. D.h. nicht nur die Lautfolge der Rede wird durch diesen Text (sehr weit) vorgegeben, sondern darüber hinaus auch die Pausenstruktur und der Sprechstil.

6.1.3.4 Freie Sprechweise

Anschließend, unter Vorlage des Bildes, erfolgte die Aufforderung: "Beschreiben Sie bitte eine halbe bis ganze Minute lang, was Sie sehen."

Als Bildstimulus für frei gesprochene Sprache dient das bekannte Umsprungbild vom amerikanischen Karikaturisten W. E. Hill "My wife and my mother-in-law" in, das 1915 erstmals in der satirischen Zeitschrift Puck veröffentlicht wurde. 87 1930 wurde das Bild von Edward G. Boring in die Psychologie eingeführt. Es wird u.a. als Persönlichkeitstest eingesetzt, um zu überprüfen ob Personen eher zu positivem oder negativem Denken neigen, wobei als negatives Denken gilt, wenn man zuerst oder ausschließlich die alte Frau erkennt. Ohne die Aussagekraft dieses Tests (über-)beanspruchen zu wollen, ist es ein Beispiel dafür, dass ein und derselbe optische Stimulus verschieden interpretiert werden kann, dass also Perzeption und Wissen interagieren (müssen), um zu erkennen.

Die Auswahl gerade dieses Bildes, um über dessen Beschreibung "freie" Rede erzeugen zu lassen, war eher zufällig und ist nur durch die oberflächlichen Gemeinsamkeiten "junge und alte Frau" des Bildes mit dieser Arbeit zu begründen. Die Notwendigkeit einen Stimulus vorzugeben, ergab sich aus den Erfahrungen des Vortests, wo die Sprecherinnen mit der Aufgabe einen passenden Monolog zu produzieren sichtlich Probleme hatten. Die Folge waren sehr lange Pausen, oder, noch schlechter, da das Alter noch geschätzt werden soll, implizite Andeutungen über ihr Alter durch das selbst gewählte Thema.

6.2 Bearbeitung der Sprachbeispiele

Die Aufnahmen wurden vom selben DAT-Recorder, mit dem die Stimmen aufgezeichnet wurden, über eine digitale Schnittstelle auf einen PC überspielt. Der Schnitt erfolgte unter dem Programm WaveLab Version 3.0 der Firma Steinberg. Die Schnittpunkte waren

⁸⁵ Eine Replikation des Textstimulus befindet sich im Anhang.

⁸⁶ Weise, Silvia (1999): Perzeptive und akustische Analysen von jungen und alten Stimmen. Magisterarbeit im Fachgebiet Kommunikationswissenschaft der TU Berlin

⁸⁷ Eine Replikation des Bildstimulus befindet sich im Anhang.

ausschließlich Nulldurchgänge des Zeitsignals. Anschließend wurden die Dateien direkt in das Programm MDVP der Firma KAY Elemetrics, mit dem die akustischen Parameter extrahiert wurden, eingelesen.

Einige der Sprechbeispiele mit zusammenhängender Rede mussten vor der Parameterextraktion normalisiert werden, da MDVP Signale, die 0 dB erreichen, nicht extrahiert. Die Normalisierung hat aber keinen Einfluss auf die in dieser Untersuchung betrachteten Parameter. Dies wurde durch die Normalisierung anderer Beispiele und deren Vergleich mit dem Original überprüft. Die normalisierten Redebeispiele sind trotzdem in den Daten-Dateien markiert.⁸⁸

Zur Erstellung der Hörtest-CD wurden die selben Sprechbeispiele, die auch der akustischen Analyse unterzogen wurden, zuerst randomisiert und dann gruppiert, um die maximale Anzahl der durch das Audio-CD-Format vorgegebenen Trackzahl (99) nicht zu über- bzw. die Trackmindestlänge (4s) nicht zu unterschreiten. Danach wurde die Sampelrate der gruppierten Sprechbeispiele durch WaveLab von 48 kHz nach 44,1 kHz konvergiert. Gebrannt wurden die Hör-CDs mit dem Programm WinOnCD, Version 3.8. durch einen CD-Brenner mit "burn-proof"-Technologie.

6.2.1 Die Vokalbeispiele

Von den aufgezeichneten Vokalbeispielen wurde pro Sprecherin jeweils ein /a/, ein /i/ und ein /u/ ausgewählt. Kriterium für diese Auswahl war eine Mindestdauer von 3 Sekunden, sowie der augenscheinlich konstanteste Intensitätsverlauf innerhalb der jeweiligen Vokalkategorie.

Aus den ausgewählten Vokalen wurden jeweils zwei Sprechbeispiele erzeugt: Einmal wurden die ersten 2,2 Sekunden ausgewählt und zum anderen 2,2 Sekunden aus der Mitte des Vokals, Kriterium für die genaue Bestimmung dieses Mittelteils war wiederum der augenscheinlich konstanteste Intensitätsverlauf innerhalb des Vokals. Hieraus ergeben sich die sechs unterschiedlichen Vokalgruppen: 1. /a/-Anfang (in den Auswertungstabellen und einigen Diagrammen auch mit "aa" bezeichnet), 2. /a/-Mittelteil ("as", "s" für stationär), 3. /i/-Anfang ("ia"), 4. /i/-Mittelteil ("is"), 5. /u/-Anfang ("ua") und 6. /u/-Mittelteil ("us"). Die exakte Dauer der Vokalbeispiele beträgt zwischen 2,198 und 2,203 Sekunden, bedingt durch das Schneiden an Nulldurchgängen.

6.2.2 Die Textbeispiele

Aus den gelesenen Texten wurde von jeder Sprecherin ein Versuch ausgewählt – sofern mehrere aufgezeichnet wurden. Kriterium für die ausgewählten Textbeispiele war fehlerfreies Lesen. Aus den ausgewählten Beispielen wurde der mittlere Abschnitt⁸⁹ zur Weiterverwendung ausgeschnitten, also ein Abschnitt, bei dem die Sprecherinnen gerade im Redefluss sind. Die Dauer dieser Ausschnitte beträgt ca. 10 Sekunden. Die Textbeispiele beginnen unmittelbar (ohne Pause) mit der ersten Schwingung des /a/ von "an" und enden, ebenfalls ohne Pause, mit der letzten Schwingung des /e/ von "Straße".

88 Vgl. hierzu in den SPSS-Datendateien "akust(bsp)" oder "akust(sprecher)" die Variablen "fehler".

⁸⁹ "An der nächsten Ecke bin ich links in die Helenenstraße abgebogen und kurz danach gleich wieder links in die Schloßstraße – ach nein, falsch, da musste ich ja rechts in die Königsberger Straße."

Die Gruppe der Textbeispiele wird in Auswertungstabellen und Diagrammen entweder durch den Buchstaben "t" oder durch "Text" repräsentiert.

6.2.3 Die Beispiele freier Sprechweise

Aus den Bildbeschreibungen, deren ursprüngliche Längen zwischen ca. einer halben und zwei Minuten betrugen, wurde ein Stück ausgeschnitten, das etwa 10-15 Sekunden lang ist, also ungefähr so lange wie auch die Textbeispiele. Die Schnittpunkte wurden so gesetzt, dass unmittelbar am Anfang eines Beispiels freier Rede ein neues Wort beginnt und das Beispiel auch unmittelbar nach einem Wort endet. Ein weiteres Auswahlkriterium für das Sprechbeispiel freier Rede war, dass während des Ausschnittes möglichst ohne Denkpausen gesprochen werden sollte.

Die Gruppe der Beispiele freier Rede wird in Auswertungstabellen und Diagrammen entweder durch den Buchstaben "b" oder durch "Bild" repräsentiert.

Pro Sprecherin werden in dieser Arbeit also acht verschiedene Sprechbeispiele untersucht. Von diesen verschiedenen Sprechbeispielen wird angenommen, dass sie sich bezüglich der altersrelevanten Information, die sie transportieren, unterscheiden können.

6.3 Die stimmbeschreibenden Parameter⁹⁰

Die Entstehung der Stimme lässt sich in zwei separate Vorgänge teilen: die Phonation und die Artikulation. Beide verändern sich durch das Altern.

Der einzige Parameter, der hier erhoben wird und die Artikulation erfasst, ist die Sprechgeschwindigkeit. Da es hierfür (meines Wissens nach noch) keine automatisierte Berechnungsmöglichkeit gibt, erfolgten die erforderlichen Erfassungsschritte (Bestimmung und Dauermessung der Pausen und Zählen der Silben) anhand einer Darstellung des Zeitsignals mit dem Programm WaveLab.

Alle anderen extrahierten Parameter beschreiben primär⁹¹ die Phonation, also das Schwingungsverhalten der Stimmlippen. Sie wurden mit Hilfe des Sprachverarbeitungssystems CSL (Computerized Speech Lab) bzw. MDVP (Multi-Dimensional Voice Program) der Firma KAY Elemetrics bestimmt. Dieses Programm dient in erster Linie der wissenschaftlichen bzw. medizinischen Beschreibung pathologischer Stimmen. Die empfohlene Vorgehensweise, um mit diesem Programm kranke von gesunden Stimmen unterscheiden zu können, sieht zunächst das direkte Einsprechen eines angehaltenen /a/ vor. Durch das Stoppen der Aufnahme wird ein bestimmt⁹². Vokals anhand quasistationärer Mittelteil des

⁹⁰ Eine ausführliche Erläuterung der Parameter findet sich in KAY Elemetrics Corp. (1993): Multi-Dimensional Voice Program, Model 4305, Operations Manual. oder in den Hilfe-Dateien des Programms.

⁹¹ Die von MDVP extrahierten Parameter wurden entwickelt, um anhand des akustischen Stimmsignals Rückschlüsse auf die Phonation ziehen zu können. Davon abgesehen ist anhand des Signals nicht fehlerfrei auf den Einfluss der Quelle zu schließen, da dazu die Filterfunktion des Ansatzrohres vollständig beschrieben werden müsste.

 $^{^{92}}$ Die Kriterien für diese Bestimmung sind nicht veröffentlicht.

Parameterextraktion erfolgt. Anfang und Ende der Aufnahme werden automatisch weggeschnitten, wenn sie die vorher einzustellende Dauer überschreitet.

Tabelle 1: akustische Parameter

Die *kursiv* gedruckten Maße werden nur bei den Beispielen mit zusammenhängender Rede untersucht.

beschriebener Vorgang	Parametergruppe	9	Parameter
Artikulation	Sprechgeschwin nicht von MDVP		Dauer des Analyseabschnitts (t) Summe der Pausendauern (t(Pau)) Artikulationsrate (AR) Anzahl der Pausen (N(Pau))
	Tremor		Intensitätsindex des Fo-Tremors (FTRI) Intensitätsindex des Amplitudentremors (ATRI)
	Tonhöhe		mittlere Grundfrequenz (F0)
		F0-Stabilität	Standardabweichung der Grundfrequenz (SD(F0)) absoluter Jitter (Jita): Grundfrequenzänderung von einer Periode zur nächsten an der mittleren Grundfrequenz relativierter Jitter (Jitt) relativer Jitter mit Glättung über 3 Perioden (RAP) relativer Jitter mit Glättung über 5 Perioden (PPQ) relativer Jitter mit Glättung über 55 Perioden (sPPQ)
Phonation	Stimmstabilität	Amplituden- stabilität	relative Standardabweichung von Fo (vF0) absoluter Shimmer (ShdB): Amplitudenveränderung von einer Periode zur nächsten an der mittleren Amplitude des gesamten Sprachbeispiels relativierter Shimmer (Shim) relativer Shimmer mit Glättung über 5 Perioden (APQ)
			relativer Shimmer mit Glättung über 55 Perioden (sAPQ) relative Amplitudenstandardabweichung (vAm)
	spektrale Energi	everteilung	spektrales Rauschen (NHR): Quotient aus dem unmodulierten Energieanteils zwischen 1500 und 4500 Hz zum harmonischen Energieanteil zwischen 70 und 4500 Hz Behauchtheit (VTI): Quotient aus dem unmodulierten Energieanteil zwischen 2800 und 5800 Hz und dem harmonischen Energieanteil zwischen 70 und 4500 Hz soft phonation index (SPI): Quotient aus dem harmonischen Energieanteil zwischen 70 und 1600 Hz und dem harmonischen Energieanteil zwischen 1600 und 4500 Hz

Diese Automatisierung ist bei der beschriebenen Untersuchung unerwünscht, da nicht nur ein quasistationärer Vokalmittelteil sondern auch die Anfänge untersucht werden sollen. Sie kann aber umgangen werden wenn die Sprechbeispiele nicht direkt über die CSL-Hardware eingesprochen werden sondern bereits als Soundfile vorliegen, die nur noch durch das Programm bearbeitet werden müssen.

Aus sämtlichem erhobenem Sprachmaterial werden folgende Parameter bestimmt. MDVP extrahiert routinemäßig 33 verschiedene Parameter. Die folgenden stellen die Auswahl derer dar, bei denen die Vermutung besteht, sie könnten Zusammenhänge mit dem Alter aufweisen (Tab. 1).

6.4 Wahrnehmungstest

Um das an einzelnen Sprachbeispielen wahrnehmbare Stimmalter zu bestimmen, wurde ein Wahrnehmungstest⁹³ durchgeführt. Die Hörer wurden gebeten, die CD mit den Stimmbeispielen über Kopfhörer anzuhören. Die Aufgabe der Hörer war, das chronologische Alter der jeweiligen Sprecherin zu schätzen.

6.4.1 Die beurteilenden Hörer

Insgesamt 15 Hörer beurteilten die Hörbeispiele. Sechs davon sind weiblich, 9 männlich. Sechs haben phonetische Kenntnisse neun nicht. Sechs Hörer beurteilten die Beispiele nach dem Hörtest1, neun nach dem Hörtest2. Keinem der Hörer ist eine Beeinträchtigung seines Gehörs bekannt. Junge und mittelalte Erwachsene sind lt. Linville⁹⁴ bei Altersschätzungen am genauesten. Deshalb wurden die Hörer nach diesem Kriterium ausgewählt. Die Hörer waren zum Zeitpunkt der Beurteilung zwischen 22 und 35 Jahre alt. Das mittlere Alter ist 28,67 Jahre, die Standardabweichung 3,46 Jahre.

6.4.2 Das Testdesign

Im Wahrnehmungstest werden alle Stimmbeispiele aus allen acht unterschiedlichen Bedingungen beurteilt. Die Vokale werden zuerst dargeboten, dann die Textbeispiele und schließlich die Bildbeschreibungen. Innerhalb dieser drei Kategorien wurden die einzelnen Beispiele randomisiert. Jeweils zwölf Vokale bzw. vier Redebeispiele wurden zu einem Track zusammengefasst. Dies war notwendig, um die 448 einzelnen Beispiele in das Audio-CD-Format einzupassen, das nur 99 Tracks mit einer Mindestlänge von vier Sekunden zulässt.

Der Unterschied der beiden Hörtestversionen besteht darin, dass diese Audiotracks innerhalb der Beispielkategorien in ihrer Reihenfolge vertauscht wurden, so dass der erste Vokal-Track der einen Version der letzte der anderen ist usw. Dadurch sollte gewährleistet werden, dass sich die einzelnen Beispiele nicht für alle Hörer an der selben Position innerhalb des Test befinden, um systematischen Beurteilungsfehlern – wie etwa durch Ermüdung oder Eingewöhnung – entgegenzuwirken. Die genaue Testanleitung entnehme

⁹³ Eines der beiden unterschiedlichen Testformulare und die dazugehörige Test-CD befinden sich am Ende dieser Arbeit

⁹⁴ Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 192

man dem Testbogen. Den Ablauf der Schätzprozedur dürfte ein Selbstversuch mit der beiliegenden Hörtest-CD am besten beschreiben.

6.5 Übersicht der statistischen Auswertung

Der erste Schritt der Auswertung ist die Berechnung der Näherungswerte für das Stimmalter der einzelnen Sprachbeispiele. Die Ausgangwerte dieser Berechnung sind die Schätzungen der Hörer. Mittelt man die Schätzwerte aller Hörer zu den jeweiligen Beispielen, so erhält man die perzeptiven Alterswerte, die die optimalen Näherungen des "Stimmalters eines Sprachbeispiels" darstellen – vorausgesetzt, auf die Schätzungen der Hörer ist Verlass. Die Varianz der einzelnen Schätzungen ist ein Maß für die Unsicherheit der Altersschätzung anhand des betreffenden Beispiels.

Aus den Stimmalterwerten und den Varianzen der einzelnen Beispiele werden Gruppenmittelwerte für die acht Sprechbedingungen ermittelt. Es resultieren Stimmalterswerte und Werte der Varianz des Alters für die einzelnen Sprechbedingungen. Erstere stellen Information darüber bereit, ob die Unterschiede der Stimuli zu unterschiedlich hoher Einschätzung des Alters führen. Die Mittelwerte der Varianzen der Einzelschätzungen unterschieden sich, wenn aus den acht Sprechbedingungen Stimuli hervorgehen, die unterschiedlich schwer zu beurteilen sind. Die Unterschiede in Mittelwerten und Varianz der Altersschätzungen werden auf ihre statistische Relevanz geprüft.

In derselben Varianzanalyse soll auch der Einfluss des Rauchverhaltens auf die Altersschätzungen mitüberprüft werden. Überprüft man den Einfluss aller möglichen Störfaktoren (oder zumindest aller, die miterhoben wurden) in einer Varianzanalyse, hat das den Vorteil, dass sich dadurch der Anteil der Fehlervarianz an der Gesamtvarianz auf ein Minimum reduziert. Mit zunehmender Anzahl an Faktoren (bzw. Kovariaten) verbessert sich also das Verhältnis der Treatmentvarianz(en) zur Fehlervarianz und damit erhöht sich die Wahrscheinlichkeit einen Faktor als relevant bestimmen zu können – vorausgesetzt er ist relevant.

Den nächsten Schritt der Auswertung bildet der Vergleich der perzeptiven Alterswerte mit dem chronologischen Alter der Sprecherinnen. In diesem Abschnitt soll überprüft werden, wie genau Schätzungen anhand der unterschiedlichen Sprechbeispiele das chronologische Alter anzunähern vermögen.

Daran anschließend soll geprüft werden ob die akustischen Parameter von den Faktoren Sprechbedingung und Rauchverhalten beeinflusst werden, um die größtmöglichen Sprechbeispielgruppen zu bestimmen, die von den erhobenen Faktoren unbeeinflusst sind. An diesen Gruppen wird abschließend der Zusammenhang der einzelnen akustischen Parameter mit dem chronologischen und dem geschätzten Alter überprüft, um die Frage zu klären, welche akustischen Merkmale der Stimme sich mit dem Alter der Sprecherinnen verändern und welche akustischen Merkmale es sind, anhand derer Hörer das Alter von Sprecherinnen einzuschätzen vermögen.

⁹⁵ **Bortz**, Jürgen (1999): Statistik für Sozialwissenschaftler. Springer, Heidelberg, S. 279

7 Ergebnisse

Die statistische Auswertung aller erhobenen Daten erfolgt mit der Datenverarbeitungssoftware SPSS, Version 10. Die Datenmatrizen, die alle erhobenen Daten enthalten, wie auch alle der daraus erstellten Diagramme und Ergebnistabellen sind in den entsprechenden SPSS-Dateiformaten auf der Daten-CD abgelegt, die am Ende dieser Arbeit zu finden ist. Die wichtigsten dieser Ergebnisse werden in diesem Abschnitt ausführlich dargestellt. Im Anhang ist ebenfalls eine Teilmenge der Ergebnisse zu finden, auf die an entsprechenden Stellen dieses Kapitels verwiesen wird.

Die Datenmatrizen befinden sich im Ordner "Daten", alle Ergebnisausgaben im Ordner "Ergebnisse"

7.1 Zur Übereinstimmung der Altersschätzungen

Ziel der statistischen Analysen des Hörtests ist, die Zuverlässigkeit der Schätzung des Stimmalters zu überprüfen. Das Stimmalter sollte die altersrelevante Information, die aus den akustischen Parametern extrahierbar ist, treffender erfassen als das chronologische Alter, da das Stimmalter dasjenige Alters-Konstrukt ist, das sich unmittelbar auf das Sprachsignal bezieht. Deswegen sollten auch die am Sprachsignal erhobenen akustischen Maße mit dem geschätzten Alter in einem größeren Zusammenhang stehen als mit dem chronologischen Alter – sofern die Schätzungen zuverlässig sind.

Das Ergebnis dieses Abschnittes sind also Alterswerte für jedes Sprachbeispiel, die neben den chronologischen Alterswerten der Sprecherinnen als Referenzwerte herangezogen werden können.

Der beste Schätzwert für einen Populationsmittelwert (die Population ist hier die Menge aller erdenklichen Altersschätzungen zu einem Hörbeispiel) ist das arithmetische Mittel der Stichprobe⁹⁶. Der beste Schätzer der Populationsvarianz ist die geschätzte Populationsvarianz, die sich aus der Stichprobenvarianz durch folgende Gleichung berechnen lässt:

$$\hat{\sigma}^2 = s^2 \frac{N}{N-1}$$

N ist die Anzahl der Subjekte in einer Stichprobe, hier also die Anzahl der Schätzungen zu einem Beispiel.

In unserem Fall beruhen aber die Stichprobenwerte bereits auf Schätzungen, nämlich auf den Altersschätzungen der einzelnen Hörer. Wie gut diese Schätzungen die chronologischen Alterswert annähern, den sie nach der Aufgabenstellung annähern sollen, wird im nächsten Kapitel überprüft. Die Frage die, hier überprüft wird lautet: Stimmen den Schätzungen aller Hörer überein? Sofern die Hörerurteile insgesamt übereinstimmen, lässt sich auch überprüfen, welche Hörer Schätzungen abgeben, die dieser allgemeinen Übereinstimmung nicht zuträglich sind.

44

⁹⁶ zu Kriterien der Parameterschätzung siehe Bortz, Jürgen (1999): Statistik für Sozialwissenschaftler. Springer, Heidelberg, S. 95 ff.

Nun ist es aber auch noch denkbar, dass sich die Altersschätzungen nicht nur von Hörer zu Hörer unterscheiden, sondern auch vom Darbietungszeitpunkt des jeweiligen Beispiels innerhalb des Tests beeinflusst werden.

Bevor die über die Hörer gemittelten Alterschätzungen für jedes Hörbeispiel als bestmögliche Annäherungen des Stimmalters zur Berechnung von Zusammenhängen mit akustischen Parametern verwendet werden, sind also die folgenden Fragen zu klären, um Klarheit über die Güte der Schätzungen des Stimmalters zu erhalten:

- 1. Stimmen die geschätzten Alterswerte der beiden Testversionen überein? Ist also die Einschätzung des Alters der Sprecherinnen anhand der einzelnen Beispiele unabhängig vom Zeitpunkt der Darbietung innerhalb des Tests?
- 2. Geben die Hörer Altersschätzungen ab, die als übereinstimmend zu beurteilen sind?

7.1.1 Prüfung der Übereinstimmung der Alterschätzungen aus den beiden Hörtestversionen

Vom Hörtest gibt es zwei Varianten, die sich in der Abfolge der einzelnen Hörbeispiele unterscheiden. Zwei Testversionen ermöglichen einen gegenseitigen Vergleich. Aufgrund der gegenläufigen Abfolge überprüft der Vergleich den Einfluss von Störfaktoren die im Testverlauf zu- oder auch abnehmen – wie z.B. die Konzentrationsfähigkeit der Hörer.

Die Hörer mit der Hörernummer 1,2,3,4,14,15 beurteilten die Beispiele in der Reihenfolge von Test1; die Hörer 5,6,7,8,9,10,11,12,13 unterzogen sich Test2. Die Urteile der einzelnen Hörer werden innerhalb der Testversionen arithmetisch gemittelt. So entstehen testspezifische Einschätzungen jedes Beispiels.

Hat die Abfolge der Beispiele keinen entscheidenden Einfluss auf deren Bewertung, dann müssen die Beispiele mit hoher (niedriger) Bewertung in Test1 auch in Test2 hoch (niedrig) bewertet werden. D.h. in diesem Fall muss ein positiver Zusammenhang zwischen den testspezifischen Einschätzungen bestehen. Die Nullhypothese lautet demzufolge: zwischen den Schätzungen besteht kein positiver Zusammenhang.

Zur Prüfung dieses Zusammenhangs bieten sich zwei statistische Verfahren an: Die Rangkorrelation nach Kendall und die Korrelation (intervallskalierter Werte-Vektoren) nach Pearson.

Der Korrelationskoeffizient nach Pearson ist ein Zusammenhangsmaß, das den intervallskalierten Charakter der Altersschätzungen berücksichtigt. Die Überprüfung der Hypothese (der Signifikanztest) ist jedoch an die Voraussetzung gebunden, dass die Grundgesamtheit, aus der die Stichproben entnommen sind, bivariat normalverteilt ist. Da die Überprüfung dieser Vorraussetzungen an einige Schwierigkeiten gebunden ist, beschränkt man sich normalerweise auf die Prüfung der Normalverteilung der einzelnen Merkmale. Das ist zwar eine notwendige aber keine hinreichende Prüfung der bivariaten Normalverteilung.

Um die Zusammenhangshypothese bzgl. der beiden Testversionen unabhängig von nicht überprüften Vorraussetzungen festzustellen, wird zusätzlich Kendalls τ berechnet.

⁹⁷ vgl. **Bortz**, Jürgen (1999): *Statistik für Sozialwissenschaftler*. Springer, Heidelberg, S. 204 ff.

Die Rangkorrelation τ von Kendall⁹⁸ ist ein verteilungsfreier Test zur Überprüfung der Nullhypothese, dass zwei abhängige Stichproben keinen Zusammenhang aufweisen. Verteilungsfrei bedeutet, dass dieses Verfahren die intervallskalierten, über eine Testversion gemittelten Altersschätzungen in Rangdaten transformiert. Dabei geht allerdings Information verloren: Ein geschätztes Alter von 40 Jahren wird bei dieser Berechnung nicht als "doppelt so hoch" wie 20 Jahre angesehen, sondern nur als "höher".

Kendalls Rangkorrelation beträgt $\tau=0,604$. Bei einer absoluten Übereinstimmung der Rangreihen der testspezifischen mittleren Schätzungen wäre $\tau=1$, bei absolut gegenläufigen Rangreihen -1. Die gefundene Übereinstimmung ist mittelhoch bis hoch. Die Wahrscheinlichkeit dafür, dass diese Übereinstimmung zufällig zustande gekommen ist (das Signifikanzniveau⁹⁹), ist p < 0,05%. Die Rangkorrelation ist also hoch signifikant. Der Kolmogorov-Smirnov-Test, der hier die Nullhypothese prüft, dass sich eine empirisch ermittelte Verteilung nicht signifikant von einer Normalverteilung unterscheidet, ergibt für die Mittelwerteverteilung beider Testversionen ein nicht signifikantes Ergebnis (Test1: p = 0,324; Test2: p = 0,258). 100 D.h., die gängige Überprüfung der bivariaten Normalverteilung ergibt, dass die parametrische Hypothesenprüfung zulässig ist. Der Korrelationskoeffizient nach Pearson beträgt r = 0,805. r hat den gleichen Werteumfang wie τ : "r = 1" entspricht einem absolut positiven Zusammenhang, "r = -1" einem absolut negativen und "r = 0" keinem. r = 0,805 zeigt einen hohen positiven Zusammenhang zwischen den beiden Testversionen. Auch diese Korrelation ist einseitig hochsignifikant (p < 0,05%).

Zusammenfassend lässt sich sagen, dass zwischen den beiden Testversionen mit sehr hoher Wahrscheinlichkeit ein hoher Zusammenhang besteht. D.h., der Darbietungszeitpunkt der Beispiele innerhalb des Hörtests hat keinen entscheidenden Einfluss auf die Relation der Schätzwerte zueinander. Hieraus folgt, dass eine Mittelung der Werte, die aus den unterschiedlichen Testversionen hervorgehen, zu Schätzwerten führt, die den Stimmalterswerten der einzelnen Beispiele¹⁰¹ wahrscheinlich¹⁰² ähnlicher sind, als die Schätzungen die aus einem Test hervorgehen.

An dieser Stelle stellt sich die Frage, ob es überhaupt sinnvoll ist, mehrere Testversionen zu erstellen, wenn deren Schätzwerte ohnehin wieder gemittelt werden sollen. Die testspezifischen Werte korrelieren zwar hoch miteinander, doch zeigt sich auch, dass Test1 zu einer im Mittel höheren Einschätzung des Alters führt, als Test2, dass also aufgrund nur einer der beiden Testversionen die Einschätzungen verzerrter wären.

-

¹⁰⁰ Die entsprechende SPSS-Ausgabe findet sich in der Datei "hörverteil".

⁹⁸ Bortz, J. & Lienert G. A. (1998): Kurzgefaßte Statistik für die klinische Forschung. Springer, Heidelberg, S. 247 ff.

⁹⁹ einseitige Signifikanzniveau, da die Alternativhypothese einseitig formuliert wurde

Das sind diejenigen Schätzwerte, die man erhielte, wenn beliebig viele Hörer alle Beispiele in allen möglichen Abfolgevariationen beliebig oft einschätzen würden, und all diese Schätzwerte zu jedem Beispiel arithmetisch gemittelt würden.

Potentiell ist es möglich, dass einer der Hörer genau die Werte angegeben hat, die den Stimmalterwerten entsprechen und dass die Schätzungen der anderen Hörer diese Werte nur verzerren, wenn man sie miteinander verrechnet. Das ist aber sehr unwahrscheinlich. Außerdem wüsste man nicht, welcher Hörer diese Leistung vollbracht hat, bis man die "wahren" Schätzwerte ermittelt hätte.

In den oben zu sehenden Streudiagrammen stellt jeder Punkt ein beurteiltes Beispiel dar. Im linken ist die horizontale (vertikale) Position eines Beispiels bestimmt durch den Schätzwert des Alters aus Test2 (Test1); im rechten ist es umgekehrt. Die schrägen Linien stellen die Regressionsgeraden dar. Die Position einer Regressionsgeraden in der Punktewolke ist dadurch festgelegt, dass die Summe der quadrierten Abweichungen in y-Richtung aller Punkte von ihr minimal ist. D.h. sie wird so berechnet, dass der quadrierte Vorhersagefehler der y-Werte durch die x-Werte minimal wird. Die Testversionen wären als identisch anzusehen, wenn die Werte eines Beispiels in beiden Testversionen gleich wären oder nur mit solchen Fehlern behaftet, die sich durch die Mittelung ausgleichen. In diesem Fall würden die Regressionsgeraden beider Diagramme durch den Ursprung des Koordinatensystems gehen und die Steigung 1 (≜ 45°) aufweisen. Auch die horizontalen Linien, deren Schnittpunkt mit der y-Achse den y-Mittelwert markiert, würden dann in beiden Diagrammen den selben y-Mittelwert kennzeichnen. Dieser Mittelwertsunterschied ist zudem signifikant:

Deskriptive Statistiken

	N	Mittelw.	Standardab.	Min.	Max.	Perzentile		
						25.	Median	75.
AM1	448	43,3067	8,0302	20,83	74,00	37,8083	43,8167	48,1250
AM2	448	39,9196	8,8451	22,00	72,00	33,6667	39,2222	45,6667

Test der Mittelwertunterschiede	Signifikanzniveau (zweiseitig)
Varianzanalyse	p < 0,0005
Wilcoxon-Test	p < 0,0005

Die Kürzel AM1 bzw. AM2 stehen für Mittelwert des Test1 bzw. Mittelwert des Test2.

Weitere Versuche der Ursache dieses Unterschieds nachzugehen blieben ergebnislos. Zwar sind beide Partialkorrelationen zwischen den Testwerten und der Nummer des CD-Tracks,

in dem das zu bewertende Beispiel vorkommt, innerhalb des jeweiligen Tests – als Kontrollvariable die Testwerte des anderen Tests – hochsignifikant, doch sind diese Überzufälligkeiten wegen ihrer konträren Korrelationskoeffizienten (-0,1954 und 0,4837) nicht sinnvoll zu interpretieren: Falls es zu Konzentrationsschwankungen während der Testbearbeitung kommt, sind diese individuell zu unterschiedlich oder sie verlaufen über die Testdauer nicht stetig genug, als dass ihr Einfluss bestimmbar wäre. Trotzdem erzeugt der Unterschied der Testversion im Mittel unterschiedlich hohe Einschätzungen, weshalb unterschiedliche Testversionen günstig erscheinen – am besten wäre es, wenn jeder Hörer eine neu randomisierte Abfolge der Beispiele zu beurteilen hätte.

7.1.2 Prüfung der Übereinstimmung der Beurteilungen durch die Hörer

Je übereinstimmender die Beurteilungen sind, desto verlässlicher sind eventuelle Korrelationen der akustischen Parameter mit den Hörerurteilen: D.h., sind die Altereinschätzungen bezüglich der einzelnen Beispiele zu unterschiedlich, dann ist eine mögliche Korrelation des geschätzten Alters mit einem der akustischen Parameter zufällig.

Ziel der Prüfung der Übereinstimmung ist, zu gewährleisten, dass die Beispiele, die ein Hörer alt (bzw. jung) bewertet, auch von den anderen Hörern alt (bzw. jung) bewertet werden. D.h. im Prinzip sind bivariate Korrelationen jedes Hörers mit jedem anderen Hörer ein angemessenes Testverfahren, nur ist erstens die Berechnung eine sehr langwierige Angelegenheit, zweitens sind die Korrelationskoeffizienten nicht einfach über arithmetische Mittelung in einen Korrelationskoeffizienten für alle Hörer überführbar und drittens verändert sich auch die Signifikanzprüfung. D.h., als verteilungsfreies Verfahren bietet sich die Konkordanzprüfung mehrerer Beurteiler von Kendall an. Ein möglicher parametrischer Test ist die Reliabilitätsanalyse.

Zunächst erschein es sinnvoll, die Übereinstimmung der Beurteilungen mit einem Test über alle gehörten Beispiele zu überprüfen. Wäre aber nun eine oder mehrere Sprechbedingung gar nicht sinnvoll zu bewerten, andere dafür so übereinstimmend, dass trotzdem alle Beispiele zusammen noch als übereinstimmend beurteilt werden könnten, so würde das Ergebnis den tatsächlichen Verhältnissen nicht gerecht werden. Die Übereinstimmung wird deshalb für jede Sprechbedingung separat überprüft.

Um zu überprüfen, ob die Beurteilungen der Hörer übereinstimmend sind, wird der Konkordanzkoeffizient von Kendall¹⁰⁴ berechnet, da nur bei der Beurteilung der Textbeispiele alle Hörer hinreichend normalverteilte Schätzungen abgaben¹⁰⁵. Da die

nach **Bortz**, J. & **Lienert** G. A. (1998): *Kurzgefaßte Statistik für die klinische Forschung*. Springer, Heidelberg, S. 279 ff.

Die Ergebnisse der Partialkorrelationen finden sich in der Datei "hörtestunterschied" auf der beigelegten Daten-CD. Die Ergebnisse sind folgendermaßen zu interpretieren: Bei Test2 zeigt sich ein positiver Zusammenhang zwischen Schätzwert und Tracknummer, bei Test1 ein negativer...

¹⁰⁵ Die entsprechende SPSS-Ausgabe findet sich in der Datei "hörverteil".

Reliabilitätsanalyse (ein Test der internen Konsistenz) 106 Analysemöglichkeiten bietet, die über die Bestimmung der Übereinstimmung hinausgehen, soll auch sie angewandt werden. Mit Hilfe der Reliabilitätsanalyse lässt sich sicherzustellen, dass keiner der Hörer vollkommen anderes urteilt, als alle anderen. Ergebnis der Reliabilitätsanalyse ist zum einen ein Wert, der als Maß der internen Konsistenz gilt: Cronbachs α . Andererseits lassen sich aber auch Hörer bestimmen, die α verschlechtern. Hierzu wird einfach die Analyse ohne das Zuwirken des jeweiligen Hörers berechnet und überprüft, ob α ohne höher ist als α mit. Dieser Vergleich gibt allerdings keine Auskunft darüber, ob ein Hörer das chronologische Alter schlechter oder besser schätzt, als die anderen Hörer, sondern nur darüber, ob seine Schätzungen nicht so gut mit den Schätzungen der anderen übereinstimmen, wie diese untereinander.

Die Reliabilitätsanalysen liefern folgende Ergebnisse: Die hörerbezogenen Mittelwerte der Alterschätzungen in der jeweils ersten Tabelle¹⁰⁷ geben, verglichen mit dem Mittelwert des chronologischen Alters der Sprecherinnen (49,77 Jahre), Auskunft darüber, ob ein Hörer eher geneigt ist, das Alter zu über- oder zu unterschätzen. Sehr auffällig ist hierbei, dass das gemittelte geschätzte Alter fast immer¹⁰⁸ niedriger ist als das chronologische. D.h. alle untersuchten Hörer schätzen die Sprecherinnen als Gruppe jünger als sie sind.

Die hörerbezogenen Standardabweichungen zeigen, wiederum im Vergleich mit der chronologischen von 16 Jahren, die Neigung extreme Schätzungen zu vermeiden. Hier gibt es sogar nur noch einen einzigen Wert¹⁰⁹ der höher ist, als die Standardabweichung des chronologischen Alters in der Stichprobe!

Die Alpha-Werte der gesamten Beurteilung, wie auch verteilungsfreien Prüfgrößen W sind in der folgenden Tabelle zusammengefasst:

Art des gehörten Beispiele	Anzahl der Bewerter	Kendalls W	Anzahl der Beispiele	Cron- bachs α	Hörer, die α verschlechtern
ganzer Hörtest ¹¹¹	-	-	262	0,9194	15
Bildbeschreibung	8	0,654	41	0,9588	15
gelesener Text	8	0,730	38	0,9668	15
/a/- Anfang	10	0,524	27	0,9294	2, 3
/a/-Mittelteil	11	0,438	30	0,9095	1, 10
/i/-Anfang	8	0,506	34	0,9125	15
/i/-Mittelteil	9	0,371	32	0,8756	1
/u/-Anfang	9	0,327	26	0,8523	14, 3
/u/-Mittelteil	10	0,336	34	0,8715	2, 3

¹⁰⁶ nach Bortz, Jürgen (1999): Statistik für Sozialwissenschaftler. Springer, Heidelberg, S. 543 sowie Bühl, A. & Zöfel, P. (2000): SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. Addison-Wesley, München, S. 501 ff.

109 Hörer2 bei der Einschätzung der /a/-Anfänge

Wenn ein Bewerter nicht alle Beispiele der jeweiligen Kategorie bewertet, können seine Schätzungen in die Übereinstimmungsberechnung nach Kendall nicht aufgenommen werden.

¹¹¹ Die fehlenden Werte sind darauf zurückzuführen dass bei SPSS die Anzahl der berechenbaren Variablen beim Konkordanztest von Kendall beschränkt sind.

49

¹⁰⁷ Die SPSS-Ausgaben zu den Reliabilitätsanalysen finden sich in der Datei "Hörerübereinstimmung" auf der Daten-CD.

Bei der Text-Sprechbedingung überschätzen zwei Hörer das mittlere Alter geringfügig, bei der Bildbeschreibung einer.

Kendalls W variiert zwischen den Werten 0, bei keiner Übereinstimmung, und 1 bei vollkommener Übereinstimmung. Werte zwischen 0,3 und 0,5 zeigen eine eher schwache, Werte zwischen 0,5 und 0,7 eine mittlere und Werte über 0,7 eine hohe Übereinstimmung an. Cronbachs α gilt ebenfalls als gut, wenn es über 0,7 liegt. Die Diskrepanz dieser beiden Prüfgrößen, v.a. bei den Vokalübereinstimmungen ist wohl darauf zurückzuführen, dass bei den Vokalbeispielen eine grobe Einschätzung durchaus noch möglich ist, aber durch die Transformation feiner Differenzen, die als solche nicht wahrnehmbar sind, auf Rangreihen viel Information verloren geht. Trotzdem ist nicht klar, ob das parametrische Verfahren gegenüber den offensichtlichen Verletzungen seiner Voraussetzungen robust genug ist, um verlässliche Ergebnisse zu erzeugen. Der einzige gut abgesicherte α -Wert ist der für die Textbeispiele.

Die asymptotische Signifikanz war bei allen Berechnungen von Kendalls Konkordanzkoeffizienten kleiner als 0,0005. D.h. die Wahrscheinlichkeit, dass die gefundenen Zusammenhänge zufällig entstanden sind, ist kleiner als 0,05%.

7.1.3 Zusammenfassung der Ergebnisse zu den Schätzungen¹¹²

Die beiden Hörtestversionen zeigen eine zufriedenstellende Übereinstimmung. Trotzdem weisen sie Mittelwertsunterschiede auf, weshalb es am günstigsten erscheint, für jeden Hörer einen neu randomisierten Test zu verwenden.

Die Übereinstimmung der einzelnen Hörer variiert zwischen den Sprechbedingungen. Die höchste Übereinstimmung wird anhand der Textbeispiele erzielt, die geringste bei den Beurteilungen der /u/-Anfänge. Da alle Übereinstimmungen hochsignifikant und zumindest passabel sind, und auch von keinem Hörer behauptet werden kann, seine Beurteilungen würden die Schätzwerte durchgängig verschlechtern oder er würde gar zufällig bewerten, fließen alle Hörerurteile gleich gewichtet in die beispielbezogenen Schätzwerte ein, die als beste Annäherung an das "Stimmalter eines Beispiels" gelten. Das Stimmalter einer Sprecherin wird am Besten durch die Schätzungen anhand der Textbeispiele repräsentiert, da bei dieser Sprechbedingung die höchste Hörerübereinstimmung herrscht.

Im Anhang befinden sich für jedes Beispiel die geschätzten Alterswerte und deren Varianzen, die ein Anzeichen für die Schwierigkeit der Beurteilung eines Beispiels sind. In einer weiteren Tabelle sind die Schätzwerte für jede Sprecherin dargestellt, über alle Sprechbedingungen gemittelt und zum Vergleich die (besseren) Schätzungen anhand des Texts. In einer dritten Tabelle findet man die Schätzungen gruppiert nach den Sprechbedingungen, also über die Sprecherinnen gemittelt. Die vierte Tabelle zeigt die nach dem Rauchverhalten der Sprecherinnen gruppierten geschätzten Alterswerte und Varianzen.

¹¹² die dazugehörigen SPSS-Ausgaben befinden sich in der Datei "hörermittel"

7.2 Der Zusammenhang zwischen Höhe und Varianz des geschätzten Alters

Das Streudiagramm¹¹³ zeigt die Regressionsgeraden zur Vorhersage der Varianz einer Schätzung durch ihren Mittelwert innerhalb der Faktorgruppen des Faktors Sprechbedingung. Je flacher die Regressionsgerade ist, umso weniger steigt die Varianz mit der Höhe der Schätzung. Je höher eine Gerade liegt, umso höher ist die mittlere Varianz.

Die geringsten Veränderungen der Varianz über die gesamte Breite des geschätzten Alters hinweg sind bei den Beispielen mit zusammenhängender Sprache zu beobachten. Die Varianz der Schätzungen anhand der Bild-Beispiele zeigt sich am geringsten mit der Höhe der Schätzung verbunden. Eine geringfügig höhere Varianzveränderung ist für die Textbeispiele zu beobachten. Die Schätzungen der Vokale variieren dagegen mit zunehmender Höhe der Schätzungen deutlich mehr, am deutlichsten die Schätzungen der /a/-Mittelteile.

Insgesamt kann man auch einen Zusammenhang zwischen der mittleren Höhe der Varianz und der Varianzveränderung vermuten – je höher die Regressionsgeraden liegen, desto steiler sind sie.

Die geringste mittlere Varianz weisen die Schätzungen der Textbeispiele auf, die höchste diejenigen der /a/-Anfänge. D.h. die Vokalbeispiele sind schwieriger zu bewerten. Der Unterschied zwischen den Vokalbeispielen ist weniger auf den Unterschied Vokalanfang vs. Vokalmittelteil zurückzuführen, denn auf den Öffnungsgrad des Kiefers während der Vokalproduktion. Die /u/- und /i/-Beispiele liegen relativ nah beieinander, deutlich abgesetzt darüber die /a/-Beispiele. Auch die Steigung der Geraden, also die Kovarianz zwischen Varianzen und Mittelwerten der Schätzungen relativ zur Varianz der Mittelwerte,

Dieses Diagramm in Farbe, wie auch die im Anschluss berechneten Korrelationen finden sich in der SPSS-Ausgabedatei "varianz+höhe" auf der Daten-CD.

nimmt in ähnlicher Reihenfolge zu, also in etwa mit der Abnahme der Informationsmenge, die bei der Beurteilung zur Verfügung steht.

Die folgenden Korrelationen gehen der Frage nach, ob die eben beschriebenen Zusammenhänge zufällig zustande gekommen sind, oder ob sie systematisch sind. Ob die gefundenen Differenzen zwischen den Sprechbedingungen zufälliger oder systematischer Natur sind und welche Sprechbedingung sich von welcher anderen überzufällig unterscheidet, wird im folgenden Abschnitt untersucht.

Korrelationen der Schätzmittelwerte mit den Varianzen

	aa	as	ia	is	ua	us	t	b
Pearsons r	0,354	0,505	0,320	0,323	0,350	0,333	0,303	0,177
Signifikanz	0,000	0,000	0,008	0,008	0,004	0,006	0,012	0,096
(einseitig)								

Die dazugehörigen Korrelationen deuten auf einen schwachen bis mittleren Zusammenhang zwischen der Höhe und der Varianz der Schätzungen anhand der kontrolliert erzeugten Sprachbeispiele hin. Die nahezu unkontrollierte Bildbeschreibung dagegen erzeugt Schätzungen, bei denen ein Zusammenhang zwischen Höhe des Wertes und dessen Varianz nur noch zu erahnen ist.

Erklärbar wäre dieser Zusammenhang durch die Annahme, dass mit zunehmendem Alter der zu schätzenden Person eine richtige Einschätzung schwerer fällt, da alte Menschen bezüglich sehr vieler Merkmale, welche die Stimme beeinflussen, unterschiedlicher sind als jüngere Personen. D.h. der Zusammenhang zwischen Höhe und Varianz der Alterschätzungen wäre eigentlich durch den Zusammenhang beider Größen mit dem chronologischen Alter bedingt. Aufschluss über diese Vermutung erhält man durch eine Partialkorrelation¹¹⁴ mit Alter als Kontrollvariable:

Partialkorrelationen der Schätzmittelwerte mit den Varianzen, Kontrollvariable chronologisches Alter

	aa	as	ia	is	ua	us	t	b
r	0,308	0,536	0,098	0,240	0,187	0,387	0,090	0,150
Signifikanz	0,011	0,000	0,238	0,039	0,086	0,002	0,257	0,138
(einseitig)								

Der Zusammenhang zwischen der Höhe und der Varianz des geschätzten Alters kann nur bei den Schätzungen der /i/-Anfänge, der /u/-Anfänge und der Textbeispiele zum Großteil auf den Zusammenhang beider Merkmale mit dem chronologischen Alter zurückgeführt werden.

Unter der Annahme, dass das Stimmalter den Zustand der Stimme besser beschreibt, als das chronologische Alter, sollte der Zusammenhang zwischen Höhe und Varianz der Altersschätzungen eher auf den Zusammenhang beider Merkmale mit dem Stimmalter zurückzuführen sein. Da die Schätzungen anhand der Textbeispiele die beste Annäherung des Stimmalters darstellen, wird die Partialkorrelation mit diesen Alterswerten durchgeführt:

¹¹⁴ vgl. **Bortz**, Jürgen (1999): *Statistik für Sozialwissenschaftler*. Springer, Heidelberg, S. 429 ff.

Partialkorrelationen der Schätzmittelwerte mit den Varianzen, Kontrollvariable "Stimmalter"

	aa	as	ia	is	ua	us	b
r	0,274	0,529	0,159	0,171	0,145	0,383	0,022
Signifikanz	0,021	0,000	0,123	0,107	0,145	0,002	0,437
(einseitig)							

Die Kontrolle der Korrelation durch das Stimmalter führt dazu, dass auch bei den /i/-Mittelteil- Beispielen kein signifikanter Zusammenhang zwischen deren Höhe und Varianz mehr festzustellen ist. Der Zusammenhang zwischen Höhe und Varianz des geschätzten Alters kann also geringfügig besser auf den Zusammenhang beider Merkmale mit dem Stimmalter zurückgeführt werden als auf deren Zusammenhang mit dem chronologischen Alter.

7.3 Die Varianzfaktoren des geschätzten Alters

Die Schätzung des Alters einer Person nur über ihre Stimme ist durch viele unterschiedliche Faktoren beeinflusst, z.B. durch die langfristige körperliche Verfassung der Sprecherin, durch ihre momentane Verfassung, durch die Konzentration des Hörers, durch seine Erfahrung, seine Motivation, Alter einzuschätzen, durch die Menge von Information über das Alter, die das zu beurteilende stimmliche Beispiel transportiert – um nur wenige zu nennen. Diese Faktoren erzeugen Varianz zwischen den Schätzungen, die nicht auf die Unterschiedlichkeit des chronologischen Alters der Sprecherin zurückzuführen ist. Kontrollierbar sind nur Faktoren, die gemessen wurden, also das Rauchverhalten der Sprecherinnen, die Art des Hörbeispiels und der Akzent der Sprecherin, oder solche Faktoren, die konstant gehalten wurden, wie das Geschlecht der Sprecherinnen.

7.3.1 Problemstellung

Nachdem im vorangehenden Kapitel Schätzwerte der (Hörer-)Populationsparameter für jedes Beispiel ermittelt wurden, soll nun der Frage nachgegangen werden, welche Faktoren die Variabilität dieser Werte beeinflussen. Wie aus den letzten Balkendiagrammen der gruppiert gemittelten Hörerschätzungen hervorgeht, erzeugen die Faktoren Rauchverhalten und Sprechbedingung unterschiedliche mittlere Einschätzungen. Ob diese Unterschiede zufällig sind, oder auf die unterschiedlichen Faktorstufen zurückgehen, zeigen die folgenden Varianzanalysen.

Unterschiedlicher Dialekt sollte sich hauptsächlich in der Artikulation niederschlagen, die Stimmbildung und die Sprechgeschwindigkeit aber nur geringfügig beeinflussen. ¹¹⁵ Doch um mit ausreichender Wahrscheinlichkeit einen Einfluss der unterschiedlichen Akzente der Sprecherinnen für in diese Untersuchung ausschließen zu können, wird vorab der Einfluss des Akzentes auf das geschätzte Alter geprüft.

siehe Xue, A. & Fucci, D. (2000): Effects of race and gender on acoustic features of voice analysis. Perceptual and Motor Skills, 91, 951-958 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/mdvp.jpms.PDF)

Anschließend werden folgende Fragen beantwortet: Erzeugen die Unterschiede der Sprechbedingungen unterschiedliche Altersschätzungen? Wirken sich die unterschiedlichen Sprechbedingungen auf die zentrale Tendenz der Schätzungen aus? Wirken sich die unterschiedlichen Sprechbedingungen auf die Dispersion der Schätzungen aus? Beeinflusst das Rauchverhalten der Sprecherinnen die Höhe oder die Genauigkeit der Altersschätzungen?

7.3.2 Testplan

Um den Einfluss der Faktoren Akzent, Sprechbedingung und Rauchverhalten auf die Hörerschätzungen zu bestimmen, werden Gruppenvergleiche der beispielbezogenen mittleren Hörerschätzungen und der Varianzen der Hörerschätzungen berechnet.

7.3.3 Hypothesen

Nullhypothese: Die Mittelwerte der Mittelwerte und Varianzen der Hörerschätzungen sind für alle Faktorstufengruppen gleich.

Alternativhypothese: mindestens zwei der Faktorstufengruppen unterscheiden sich voneinander bezüglich mindestens eines Merkmals.

7.3.4 Testwahl

Um auch Wechselwirkungen zwischen Faktoren bestimmen zu können und um die Fehlervarianz zu reduzieren und damit die Fragestellung genauer beantworten zu können, empfiehlt es sich, nicht den Einfluss aller in Frage kommenden Faktoren einzeln, sondern zusammen, in einer mehrfaktoriellen Varianzanalyse zu prüfen. Da die abhängigen Variablen mittleres geschätztes Alter und Varianz der Altersschätzungen voneinander abhängig sind, ist eine multivariate mehrfaktorielle Varianzanalyse indiziert.

Wie bereits bei der Beschreibung der Gruppe der Sprecherinnen deutlich wurde, sind die Akzentuntergruppen zu unterschiedlich groß, bzw. einzelne Untergruppen zu klein, um einen parametrischen Test sinnvoll einsetzen zu können, weshalb für die Mittelwerte und Varianzen der Hörerschätzungen der einzelnen Sprechbedingungen jeweils ein verteilungsfreier Test für k unabhängige Stichproben berechnet wird.

7.3.5 Testanwendung¹¹⁶

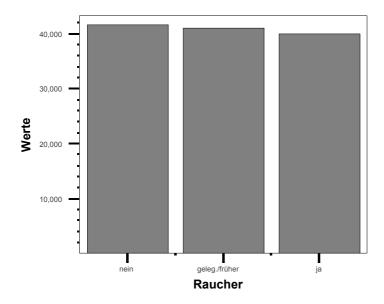
Die 16 Kruskal-Wallis-Tests¹¹⁷ zur Bestimmung des Einflusses des Faktors Akzent auf die Mittelwerte und Varianzen jeder Sprechbedingung erweisen sich auf dem 5%-Niveau alle als nicht signifikant. D.h., ein Effekt der unterschiedlichen Sprecherakzente auf die Altersschätzungen kann nicht nachgewiesen werden.¹¹⁸

Zur Bestimmung der Effekte der Faktoren Rauchverhalten und Sprechbedingung wird eine multivariate mehrfaktorielle Messwiederholungsanalyse berechnet. Abhängige Variablen

¹¹⁶ Alle SPSS-Ausgaben zu diesem Gliederungspunk befinden sich auf der CD in der Datei "hörva".

¹¹⁷ vgl. **Bortz**, Jürgen & **Lienert**, Gustav A. (1998): *Kurzgefaβte Statistik für die klinische Forschung*. Springer, Heidelberg, S.142 ff.

¹¹⁸ Die Ergebnisse finden sich im Anhang unter "Akzent als Faktor der Alterschätzung".


sind das über die Hörer gemittelte geschätzte Alter und die Varianz der Altersschätzungen. Innersubjektsfaktor ist die Sprechbedingung, Zwischensubjektsfaktor ist das Rauchverhalten.

Der Test nach dem Allgemeinen Linearen Modell (ALM)¹¹⁹ ergibt einen signifikanten Einfluss des Innersubjektsfaktors Sprechbedingung, aber keinen für den Faktor Raucher und auch nicht für die Wechselwirkung der beiden Faktoren. Bei näherer Betrachtung der geschätzten Randmittel verwundert, dass der Mittelwert der Nichtraucher der höchste ist, gefolgt vom Mittelwert der Gelegenheitsraucher. Die Raucher werden am jüngsten geschätzt:

Geschätzte Randmittel: Rauchverhalten

		Mittelwert	Standardfehler	95% Konfidenz- intervall	
Maß	Raucher			Untergrenze	Obergrenze
HÖMITTEL	nein	41,553	1,040	39,467	43,640
	geleg./früher	40,929	2,424	36,067	45,791
	ja	40,015	1,934	36,137	43,894
GESVAR	nein	108,412	3,691	101,010	115,815
	geleg./früher	109,545	8,599	92,298	126,792
	ja	93,172	6,859	79,413	106,930

Maß: HÖRERMITTEL Statistik: Mittelwert

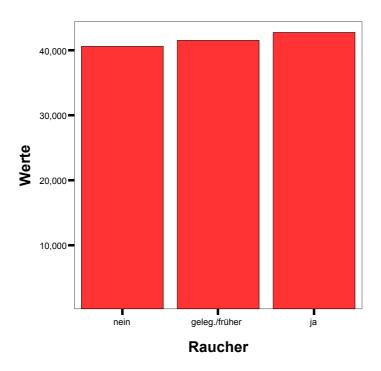
Zu erklären ist dieses ungewöhnliche Ergebnis mit der Verteilung der Raucher in der Stichprobe. Aus ihr geht hervor, dass mehr jüngere Sprecherinnen rauchen als alte. Aus diesem Grund wird in die Varianzanalyse die Kovariate (der intervallskalierte Faktor) chronologisches Alter mitaufgenommen, der die Funktion einer Kontrollvariablen zukommt, deren Einfluss "herauspartialisiert" wird: 120

¹¹⁹ Die Ergebnisse finden sich im Anhang unter "Varianzfaktoren der Altersschätzungen".

¹²⁰ vgl. Bühl, A. & Zöfel, P. (2000): SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. Addison-Wesley, München, S. 418 ff.

Multivariate Tests

Effekt			Wert	F	Hypothese	Fehler	Sign.
					df	df	
Zwischen	Intercept	Pillai-Spur	,819	115,478	2,000	51,000	,000
den Sub-		Wilks-Lambda	,181	115,478	2,000	51,000	,000
jekten		Hotelling-Spur	4,529	115,478	2,000	51,000	,000
		Größte	4,529	115,478	2,000	51,000	,000
		charakteristisc					
		he Wurzel nach Roy					
	ALTER	Pillai-Spur	,655	48,370	2,000	51,000	,000
		Wilks-Lambda	,345	48,370	2,000	51,000	,000
		Hotelling-Spur	1,897	48,370	2,000	51,000	,000
		Größte	1,897	48,370	2,000	51,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy					
	RAUCHER	Pillai-Spur	,107	1,468	4,000	104,000	,217
		Wilks-Lambda	,894	1,472	4,000	102,000	,216
		Hotelling-Spur	,118	1,476	4,000	100,000	,215
		Größte	,111	2,888	2,000	52,000	,065
		charakteristisc					
		he Wurzel nach					
		Roy					
Innerhalb	SPRECHB	Pillai-Spur	,632	4,781	14,000	39,000	,000
der		Wilks-Lambda	,368	4,781	14,000	39,000	,000
Subjekte		Hotelling-Spur	1,716	4,781	14,000	39,000	,000
		Größte	1,716	4,781	14,000	39,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy		0.450	44.000	00.000	000
	SPRECHB	Pillai-Spur	,745	8,150	14,000	39,000	,000
	* ALTER	Wilks-Lambda	,255	8,150	14,000	39,000	,000
		Hotelling-Spur	2,926	8,150	14,000	39,000	,000
		Größte	2,926	8,150	14,000	39,000	,000
		charakteristisc					
		he Wurzel nach					
	CDDECLIE	Roy	EE 4	1.004	20.000	00.000	260
	SPRECHB *	Pillai-Spur	,554	1,094	28,000	80,000	,368
	RAUCHER	Wilks-Lambda	,521	1,073	28,000	78,000	,392
	RAUCHER	Hotelling-Spur	,775	1,051	28,000	76,000	,418
		Größte	,467	1,334	14,000	40,000	,231
		charakteristisc	1				
		he Wurzel nach	1				
		Roy	l				


Die geschätzten Randmittel des Faktors Rauchverhalten der Varianzanalyse mit Kovariate lauten:

Geschätzte Randmittel

		Mittelwert	Standardfehler	95% Konfidenz- intervall	
Maß	Raucher			Untergrenze	Obergrenze
HÖMITTEL	nein	40,640	,624	39,388	41,892
	geleg./früher	41,562	1,440	38,673	44,450
	ja	42,768	1,180	40,400	45,136
GESVAR	nein	107,018	3,531	99,932	114,104
	geleg./früher	110,511	8,146	94,165	126,857
	ja	97,374	6,679	83,972	110,775

a Bei im Modell: Alter = 49,77 dargestellten Kovariaten ausgewertet.

Maß: HÖRERMITTEL Statistik: Mittelwert

Neben dem Faktor Sprechbedingung zeigt nun auch das chronologische Alter einen höchst signifikanten Effekt auf die Höhe und Varianz des geschätzten Alters, was die Fehlervarianz weiter minimiert. Die Berechnung der Randmittel für den Faktor Rauchverhalten ergibt nun auch die aus der Literatur bekannte und deshalb erwartete Reihenfolge zwischen den Faktorstufen: Raucher werden älter geschätzt als Nichtraucher. Doch signifikant ist dieser Mittelwertsunterschied nicht (die Prüfgrößen lauten: Pillai-Spur: p = 0,217; größte charakteristische Wurzel nach Roy: p = 0,065). D.h., ein Einfluss des Rauchverhaltens der Sprecherinnen auf die Schätzungen ihres Alters kann auf Grundlage dieser Daten nicht belegt werden.

Der Einfluss der Sprechbedingung auf die geschätzten Alterswerte soll aus folgenden Gründen zusätzlich durch die Berechnung eines nichtparametrischen Tests abgesichert werden: Der Levene-Test bescheinigt zwar Homoskedaszität der Arrayverteilungen.¹²³ Ferner sind sowohl die Mittelwerte als auch die Varianzen der Altersschätzungen jedes Beispiels hinreichend normalverteilt.¹²⁴ Doch dies müsste auch für alle (48) Untergruppen überprüft werden, die aus der Hinzunahme des dreistufigen Faktors Rauchverhalten zu den 2*8 Faktorgruppen entstehen. Aber auch das wäre letztendlich kein hinreichender Beleg der geforderten multivariaten Normalverteilung der abhängigen Variablen. Auch der von

¹²¹ Die Tabelle der multivariaten Tests nach dem ALM befindet sich im Anhang.

siehe z.B. Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 211, 171
 die gruppenübergreifende Homogenität der Varianzen der Werte der abhängigen Variablen innerhalb der Faktorstufengruppen

¹²⁴ Der Kolmogorov-Smirnov-Test auf Normalverteilung findet sich auf der CD in der Datei "hörverteil".

SPSS standardmäßig berechnete Mauchly-Test auf Sphärizität¹²⁵ unterstützt die Ungewissheit darüber, ob alle Voraussetzungen für ein parametrisches Verfahren erfüllt sind, zumal er signifikant ist.

Aus diesen Gründen wird also sicherheitshalber, jeweils für Mittelwerte und die Varianzen getrennt, da von SPSS kein multivariates verteilungsfreies Verfahren angeboten wird, ein verteilungsfreier Test, die Rangvarianzanalyse nach Friedmann¹²⁶, berechnet. Ergebnis dieser Tests ist ein hoch signifikanter (p = 0,004) Einfluss des Faktors Sprechbedingung auf die Höhe der Hörerschätzungen und ein höchst signifikanter (p < 0.0005) für deren Varianz.

Aus den berechneten Testverfahren folgt also, dass sowohl die mittlere Höhe, als auch die Varianz der Hörerschätzungen (sehr wahrscheinlich) durch (mindestens) zwei Faktoren beeinflusst werden: durch das chronologische Alter der Sprecherin und durch die Sprechbedingung. Dem Einfluss des chronologischen Alters ist das nächste Kapitel gewidmet. Hier soll im Folgenden der Art des Einflusses der Sprechbedingung auf die Altersschätzungen nachgegangen werden:

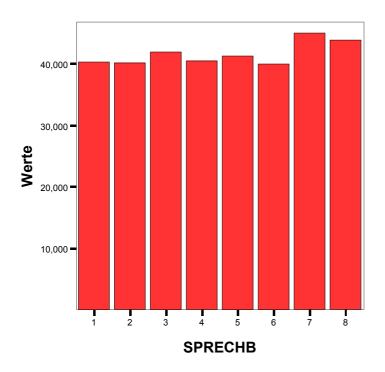
Nach den ursprünglichen Annahmen tragen die Hörbeispiele unterschiedlich viel Information über das Alter. Die Vermutung war, dass die Menge der dargebotenen Information über folgende Bedingungen abnimmt: Am meisten Information trägt die freie Rede, gefolgt vom gelesenen Text, zu den Vokalstücken mit Einschwingvorgang bis zu den Vokalmittelteilen. Wobei zwischen dem gelesenen Text und Vokalstücken mit Einschwingvorgang ein größerer Informationsverlust erwartet wird, als innerhalb der Beispiele mit zusammenhängendem Text und innerhalb der Vokalbeispiele. Dieser Informationsverlust sollte sich durch einen Anstieg der Varianz der Schätzungen abzeichnen, der Mittelwert der Hörerschätzungen sollte davon weitgehend unberührt bleiben.

Die erhobenen Werte stimmen mit den Prognosen nur bedingt überein, was sich zuerst im signifikanten Unterschied der Mittelwerte durch den Faktor Sprechbedingung ausdrückt. Am Balkendiagramm ist zu erkennen, dass die Mittelwerte der Schätzungen der Beispiele zusammenhängender Sprache höher sind als diejenigen der Vokalbeispiele. Aus den paarweisen Einzelvergleichen¹²⁷ kann man auch entnehmen, dass sich beispielsweise auch die /i/-Anfänge von den /i/-Mittelteilen signifikant unterscheiden. Es ist allerdings wissenschaftlich nicht haltbar¹²⁸, die Erkenntnisse aus der Varianzanalyse mit einem apriori-Einzelvergleich an der selben Stichprobe zu prüfen. SPSS bietet aber leider für Messwiederholungsfaktoren keine a-posteriori-Einzelvergleiche. Die berechneten

58

-

¹²⁵ In der Hilfe-Datei von SPSS ist über den Mauchly-Test auf Sphärizität zu lesen: "Ein Test der Hypothese, daß die Kovarianzmatrix der transformierten Variablen eine konstante Varianz auf der Diagonalen und sonst Nullen aufweist. Für hinreichend große Stichprobenumfänge bedeutet ein nichtsignifikanter p-Wert, daß die Anhaltspunkte für die Verwerfung der Sphärizitätsannahme nicht hinreichend sind. Für kleine Stichprobenumfänge ist dieser Test nicht sehr aussagekräftig. Für große Stichprobenumfänge kann der Test auch dann signifikant sein, wenn sich die Abweichungen auf die Ergebnisse der Varianzanalyse nur geringfügig auswirkt."

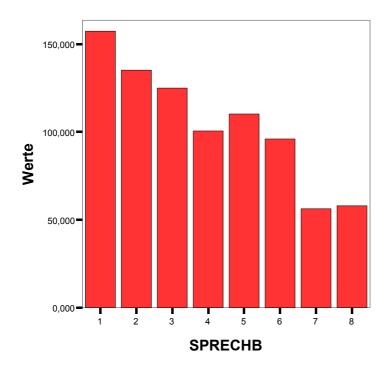

Bortz, J. & Lienert G. A. (1998): Kurzgefaßte Statistik für die klinische Forschung. Springer, Heidelberg, S. 172 ff.

¹²⁷ Die paarweisen Einzelvergleiche aller Bedingungen sind nur auf der CD in der Datei "hörva".

¹²⁸ vgl. **Bortz**, Jürgen (1999): *Statistik für Sozialwissenschaftler*. Springer, Berlin, S. 262

Einzelvergleiche sind also auch nur geeignet um Tendenzen aufzuzeigen, was aber an Diagrammen anschaulicher ist:

Maß: HÖRERMITTEL Statistik: Mittelwert



Legende:

- 1: /a/-Anfänge
- 2: /a/-Mittelteile
- 3: /i/-Anfänge
- 4: /i/-Mittelteile
- 5: /u/-Anfänge
- 6: /u/-Mittelteile
- 7: Text
- 8: Bild

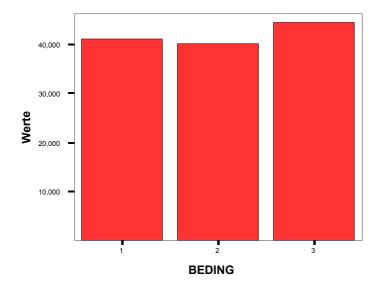
Maß: GESCHÄTZTE POPULATIONSVARIANZ

Statistik: Mittelwert

Legende:

- 1: /a/-Anfänge
- 2: /a/-Mittelteile
- 3: /i/-Anfänge
- 4: /i/-Mittelteile
- 5: /u/-Anfänge
- 6: /u/-Mittelteile
- 7: Text
- 8: Bild

An diesem Balkendiagramm wird deutlich, dass sich die Varianzen der Hörerschätzungen über die Sprechbedingungen deutlicher unterscheiden, als deren Mittelwerte. Interessanterweise scheint der Unterschied zwischen den Vokalarten größer als zwischen Anfangs- und Mittelstücken. Den Vorüberlegungen zufolge bedeutet dies, dass z.B. der Informationsunterschied zwischen /a/ und /i/ größer ist, als zwischen Vokalanfängen und Vokalmittelteilen. Ein Unterschied zwischen Vokalen bezüglich der Menge der altersrelevanten Information, die sie tragen, ist mir im Augenblick nicht erklärlich. Geschweige denn, dass dieser Unterschied größer ist als zwischen den Anfangs- und Mittelstücken.

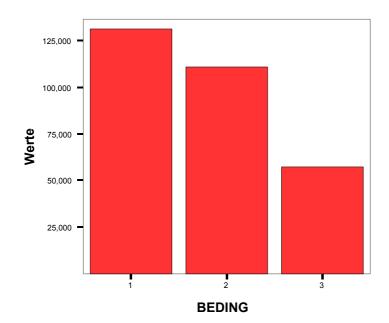

Wie bereits erwähnt, ist eine statistische Prüfung dieser Unterschiede an dieser Stelle nicht möglich, da es vorab keine Hypothese bzgl. dieser Unterschiede gab. Es gibt aber eine Hypothese zur Unterschiedlichkeit zwischen Vokalanfängen, Vokalmittelteilen und zusammenhängender Sprache. Zu deren Prüfung werden die Vokalwerte über die Vokalarten, als auch die Werte aus zusammenhängender Rede zusammengefasst:

Geschätzte Randmittel

		Mittelwert	Standardfehler	95% Konfidenzinterv all	
Maß	BEDING			Untergrenze	Obergrenze
MITTEL	1	41,211	,794	39,618	42,804
	2	40,223	,770	38,678	41,768
	3	44,475	,860	42,749	46,201
GESVAR	1	130,861	6,036	118,749	142,974
	2	110,816	5,187	100,408	121,223
	3	57,355	3,390	50,552	64,159

Dieser Tabelle als auch den nachfolgenden Balkendiagrammen ist folgende Information zu entnehmen: Der Mittelwert der Schätzungen anhand der Vokalanfänge beträgt 41,211 Jahre, die mittlere Varianz der Schätzungen in dieser Gruppe beträgt 130,861 Jahre usw.

Maß: MITTEL Statistik: Mittelwert


Legende:

- 1: Vokalanfänge
- 2: Vokalmittelteile
- 3: Rede

Die Mittelwerte der durch die Zusammenfassung einzelner Sprechbedingungen entstandenen Gruppen der Hörermittelwerte zeigen einen signifikanten Unterschied der Vokalgruppen zu der Redegruppe. D.h. die Hörer beurteilten die Beispiele mit zusammenhängender Rede älter als die Vokalbeispiele.

Bezüglich der Varianz der Hörerschätzungen unterscheiden sich die zusammengefassten Beispielgruppen alle hochsignifikant voneinander. Die Vokalanfänge erzeugen die höchste Varianz, gefolgt von den Vokalmittelteilen. Die Altersschätzungen mit der größten Übereinstimmung werden anhand zusammenhängender Rede abgegeben.

Maß : GESVAR Statistik : Mittelwert

Legende:

- 1: Vokalanfänge
- 2: Vokalmittelteile
- 3: Rede

Paarweise Vergleiche (Basieren auf den geschätzten Randmitteln)

			Mittlere Differenz (I-J)	Standard- fehler	Signifi- kanz	95% Konfidenzintervall für die Differenz	
Maß	(I) BE- DING	(J) BE- DING				Unter- grenze	Ober- grenze
MITTEL	1	3	,988 -3,264	,618 ,901	,116 ,001	-,251 -5,072	2,227 -1,456
	2	1 3	-,988 -4,252	,618 ,973	,116 ,000	-2,227 -6,205	,251 -2,299
	3	1 2	3,264 4,252	,901 ,973	,001	1,456 2,299	5,072 6,205
GESVAR	1	2	20,046 73,506	6,719 6,323	,004	6,564 60,817	33,528 86,195
	2	1 3	-20,046 53,460	6,719 5,573	,004	-33,528 42,277	-6,564 64,643
	3	1 2	-73,506 -53,460	6,323 5,573	,000	-86,195 -64,643	-60,817 -42,277

7.3.6 Interpretation

7.3.6.1 Einfluss auf die zentrale Tendenz der Schätzungen

Der Einfluss der Sprechbedingungen auf die Mittelwerte der Hörerschätzungen lässt sich erklären, wenn man berücksichtigt, dass beinahe alle abgegebenen Schätzungen das chronologische Alter der Sprecherinnen unterschätzen. Je schwieriger die Schätzung ist, desto weiter werden die chronologischen Alterswerte unterschätzt. Die eindeutige Tendenz zur Altersunterschätzung mag damit zu begründen sein, dass im täglichen Umgang jede Person peinlich davon berührt ist, wenn sie das Alter einer anderen Person zu hoch schätzt. Vielleicht auch damit, dass in der Vorstellung der Hörer das durchschnittliche chronologische Alter nicht so hoch liegt, wie in dieser Untersuchung.

7.3.6.2 Einfluss auf die Dispersion der Schätzungen

Das Ergebnis bzgl. der Varianzen ist noch überraschender als das der Mittelwerte: Erstens macht es den Anschein, als würden unterschiedliche Vokalarten unterschiedlich viel an altersrelevanter Information tragen. Zweitens scheint der Unterschied dieser Informationen größer als der Unterschied, der durch den Vergleich von Vokalanfängen mit Vokalmittelteilen entsteht.

Wenn die Varianz der Schätzungen als Maß der Unsicherheit und dadurch als Maß der vermittelten Information angesehen werden kann, dann tragen die Vokalmittelteile mehr Information als die Anfänge. Diese hochsignifikante Unstimmigkeit zwischen Vorüberlegung und Ergebnis kann (von mir) nicht erklärt werden.

7.3.7 Zusammenfassung

In diesem Kapitel wurde geprüft, welche der erhobenen Faktoren in dieser Untersuchung einen nachweislichen Einfluss auf die Variabilität der Hörerschätzungen haben. Die untersuchten Zwischensubjektsfaktoren waren der Akzent der Sprecherinnen und deren Rauchverhalten. Als Innersubjektsfaktor wurde die Stimulusart untersucht. Ein Einfluss der Zwischensubjektsfaktoren konnte nicht festgestellt werden, was auf das Untersuchungsdesign zurückzuführen ist. Es erwies sich allerdings als relevant sowohl für die Höhe, als auch für die Varianz der Hörerschätzungen, wie der zu beurteilende Stimulus geartet ist: Sprecherinnen werden anhand angehaltener Vokale jünger geschätzt, als anhand zusammenhängender Rede. Die Varianz dieser Schätzungen ist am geringsten, wenn zusammenhängende Rede beurteilt wird und steigt über Vokalmittelteile(!) hin zu Vokalanfängen.

7.4 Vergleich der chronologischen Alterswerte mit den geschätzten¹²⁹

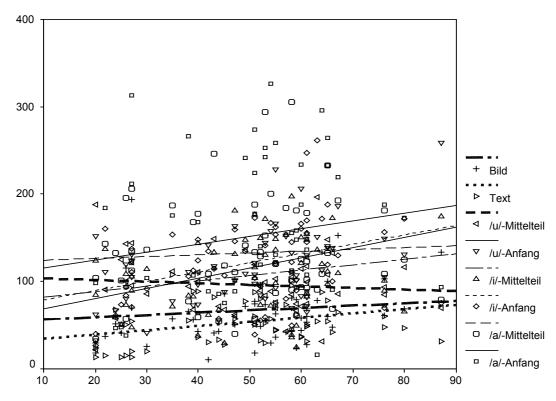
7.4.1 Problemstellung

Durch die Bestätigung eines hochsignifikanten Einflusses der Kovariate chronologisches Alter auf die Werte des geschätzten Alters kam es im vorhergehenden Kapitel bereits zu einem Vorgriff auf die Zusammenhänge, die im Folgenden dargestellt werden. Da es die

¹²⁹ Die SPSS-Ausgaben zu diesem Gliederungspunkt befinden sich in der Datei "alter+gesalter".

Aufgabe der Hörer war, das chronologische Alter zu schätzen, ist es auch nicht verwunderlich, dass die Schätzwerte einen Zusammenhang mit den Werten, die sie schätzen sollen, zeigen. Die Frage, der hier nachgegangen wird, ist, ob die Altersschätzungen und deren Varianzen den Erwartungen entsprechend positiv linear mit den chronologischen Alterswerten zusammenhängen.

Des Weiteren soll geklärt werden, aus welcher Stimulusart die Schätzwerte hervorgehen, die die chronologischen Alterswerte am genauesten wiedergeben.


7.4.2 Prüfung des Zusammenhangs zwischen dem chronologischen Alter und den Varianzen der einzelnen Sprechbedingungen

7.4.2.1 Hypothesen

Nullhypothese: Zwischen den Varianzen des perzeptiven Alters aller Sprechbedingungen und dem chronologischen Alter besteht kein Zusammenhang.

Alternativhypothese: Es besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter und der Varianz des perzeptiven Alters aller Sprechbedingungen.

7.4.2.2 Streudiagramm

Regressionsgeraden der Vorhersage der Varianzen der Schätzungen, gruppiert nach der Stimulusart aus den Werten des chronologischen Alters

7.4.2.3 Korrelationen

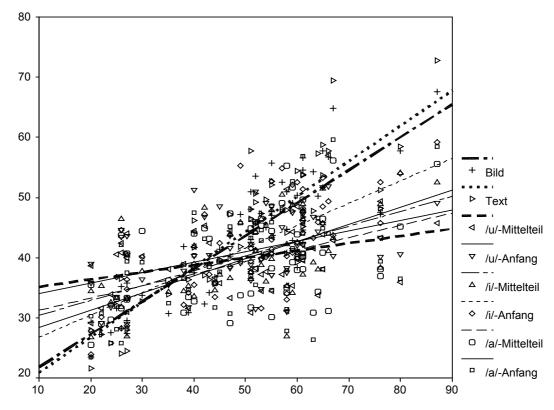
Korrelationen des chronologischen Alters mit den Varianzen der Schätzungen

	aa	as	ia	is	ua	us	t	b
Pearsons r	0,184	0,065	0,350	0,227	0,436	-0,086	0,301	0,118
Signifikanz	0,088	0,340	0,004	0,046	0,000	0,265	0,012	0,192
(einseitig)								

Korrelationen unter einem Wert von r = 0,3 repräsentieren nur einen schwachen Zusammenhang. Ist r zwischen 0,3 und 0,5 zeigt dies einen leichten bis mittleren Zusammenhang der untersuchten Variablen.

Diese Werte repräsentieren die Größe des Zusammenhangs der Varianzen der Altersschätzungen aus den verschiedenen Sprechbedingungen mit dem chronologischen Alter.

Dass die Varianzen der Altersschätzungen teilweise mit dem Alter zusammenhängen, spricht dafür, dass es schwieriger ist, das Alter älterer Personen zu schätzen als das Alter jüngerer. Dies entspricht der immer wieder beobachteten Tatsache, dass die Variabilität vieler messbarer Merkmale mit dem Alter zunimmt, die ihren extremsten Ausdruck in der Theorie der Gerodynamik von Schroots & Birren findet.


7.4.3 Prüfung des Zusammenhangs zwischen dem chronologischen Alter und dem perzeptiven Alter der einzelnen Sprechbedingungen

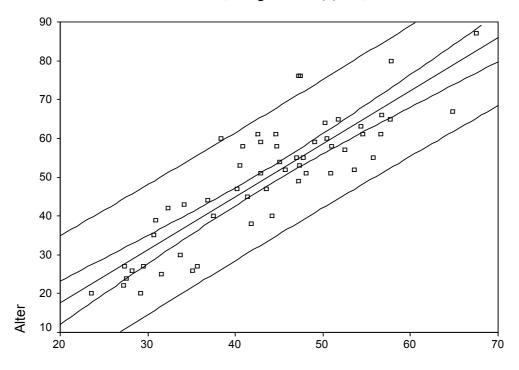
7.4.3.1 Hypothesen

Nullhypothese: Zwischen dem perzeptiven Alter aller Sprechbedingungen und dem chronologischen Alter besteht kein Zusammenhang.

Alternativhypothese: Es besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter und dem perzeptiven Alter aller Sprechbedingungen.

7.4.3.2 Korrelation und Regression

Regressionsgeraden der Vorhersage der Mittelwerte der Schätzungen, gruppiert nach der Stimulusart aus den Werten des chronologischen Alters


Korrelationen des chronologischen Alters mit den Mittelwerten der Schätzungen

	aa	as	ia	is	ua	us	t	b
Pearsons r	0,559	0,443	0,738	0,603	0,460	0,344	0,862	0,864
Signifikanz	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,000

Diese Korrelationswerte repräsentieren die Größe des Zusammenhangs der Altersschätzungen aus den verschiedenen Sprechbedingungen mit dem chronologischen Alter.

Demnach besteht der größte Zusammenhang zwischen chronologischem Alter und den Schätzungen anhand der Bildbeispiele. D.h., will man anhand dieser Daten mit Hilfe einer linearen Regression aus den Schätzwerten chronologisches Alter vorhersagen, dann erhält man die genaueste Schätzung des chronologischen Alters aus den Schätzwerten der Bildbeispiele über folgende Gleichung:

Alter =
$$1,365$$
 ges. Alter(b) $-9,633$

arithmetischer Mittelwert der Altersschätzungen (b)

Dieses Streudiagramm zeigt nochmals die Regression des Alters über das geschätzte Alter der Bildbeispiele. Die Linie in der Mitte ist die Regressionsgerade, die identisch mit der "Bildgeraden" des vorhergehenden Diagramms ist. Die hyperbolischen Linien über und unter der Regressionsgerade zeigen das 95%tige Konfidenzintervall für die Regressionsgerade. Die geraden Linien darüber und darunter Umschließen das 95%tige Konfidenzintervall für die einzelnen Schätzungen. Wird also das Alter einer Sprecherin anhand der Bildbeschreibung auf 40 Jahre geschätzt, so ist sie wahrscheinlich fast 45 Jahre alt, und mit einer Wahrscheinlichkeit von 95% ist sie zwischen 28 und 62.

Der Zusammenhang der Textbeispiele mit dem chronologischen Alter ist fast genauso hoch. Der Zusammenhang der Vokalbeispiele mit dem Alter ist schon entscheidend kleiner, was dafür spricht, dass die Vokale weniger altersrelevante Information tragen als die Redebeispiele. Dieser Unterschied könnte aber auch damit zu erklärt werden, dass die Redebeispiele ganz einfach länger sind.

Hinsichtlich der Vokalart stellt sich heraus, dass mit den /i/-Beispielen die genauesten Vorhersagen des chronologischen Alters möglich sind, gefolgt von den /a/-Beispielen. Die geringsten Zusammenhänge bestehen zwischen den /u/-Beispielen und dem chronologischen Alter. Woran die Unterschiedlichkeit der Vokalart bzgl. der Vorhersagegüte liegt, ist unklar.

Des Weiteren sind aber auch die Korrelationen des Alters mit den Vokalanfägen größer als die mit den Mittelteilen, was der Annahme entspricht, dass dem Einschwingvorgang der Stimmlippen mehr Information über das Alter zu entnehmen ist, als einem quasistationären Abschnitt.

Eine Korrelation bestimmt aber den Zusammenhang zweier Messwertreihen unabhängig von der absoluten Höhe der jeweiligen Werte. D.h. auch zwischen den Messwertreihen 1, 2, 3, 4 und 10, 20, 30, 40 besteht ein absoluter Zusammenhang. Von der ersten Reihe lässt sich aber nicht behaupten, sie stelle eine gute Schätzung der zweiten dar. Deshalb wird, um auch die absolute Höhe der Werte als Kriterium der Schätzgenauigkeit einzubinden, die mittlere Differenz zwischen den Wertepaaren zu jedem Hörbeispiel berechnet.

7.4.3.3 Differenzen

Mittlere Differenzen der chronologischen Alterswerte mit den Schätzwerten

	aa	as	ia	is	ua	us	t	b
mittle- re Dif-	10,0211	10,4948	8,2413	9,5368	8,8300	9,8209	5,5671	6,2455
ferenz								

Hieraus ist ersichtlich, dass die Schätzungen anhand der Textstimuli das chronologische Alter am besten annähern, obwohl die Korrelation zwischen den Schätzungen anhand des Bildstimulus und dem chronologischen Alter höher ist, als zwischen den Textwerten und den chronologischen.

7.5 Die Varianzfaktoren der akustischen Parameter

7.5.1 Problemstellung

In diesem Anschnitt soll der Einfluss der nicht intervallskalierten Faktoren Rauchverhalten und Sprechbedingung auf die Varianz der akustischen Parameter geprüft werden¹³⁰, um aus den 24 Faktorstufen, die durch die Kombination der drei Rauchergruppen mit den acht Stimulusgruppen entstehen, diejenigen Faktorstufen zu bestimmen, innerhalb derer die Parameter unterschiedlich ausgeprägt sind. Im folgenden Kapitel wird dann innerhalb dieser Faktorstufen der Zusammenhang zwischen Alter und den akustischen Parametern bestimmt.

Der Einfluss unterschiedlicher Dialekte auf die akustischen Paramter bleibt ungeprüft, da erstens die Einteilung in die unterschiedlichen Akzentgruppen nicht abgesichert ist und zweitens die Gruppengröße für die parametrische Analyse zu unterschiedlich ist.

7.5.2 Hypothesen

Nullhypothese: Weder der Innersubjektsfaktor Sprechbedingung noch der Zwischensubjektsfaktor Rauchverhalten der Sprecherinnen beeinflussen die Ausprägungen der akustischen Parameter.

Alternativhypothese: Mindestens zwei Faktorstufen eines Parameters haben einen überzufällig unterschiedlichen Mittelwert.

7.5.3 Testwahl

Der Kolmogorov-Smirnov-Test auf Normalverteilung bescheinigt für eine Reihe von abhängigen Variablen, deren Varianzbeeinflussung untersucht werden soll, dass sie nicht hinreichend normalverteilt sind¹³¹. Trotzdem wird – zunächst aus Gründen der $Durchf \ddot{u}hr barke it^{132}-ausschließlich \ auf \ parametrische \ Verfahren \ zur \ddot{u}ckgegriffen. \ Wie$ sich bei der Darstellung der Ergebnisse zeigen wird, gibt es auch ohne Berücksichtigung der fraglichen Variablen genügend Anlass Daten Sprechbedingungsgruppen getrennt voneinander auf eine Beeinflussung durch das Alter zu prüfen und kaum Grund, dem Rauchverhalten der Sprecherinnen einen Einfluss auf die Ausprägung der akustischen Parameter zuzuschreiben. Deshalb Messwiederholungsanalyse mit den durch die Sprechbedingung gruppierten akustischen Parametern als abhängige Variablen, der Sprechbedingung als Innersubjektsfaktor, und dem Rauchverhalten als Zwischensubjektsfaktor berechnet.

7.5.4 Ergebnisse¹³³

Tests der Zwischensubjekteffekte

Quelle	Maß	Quadratsumme	df	Mittel der	F	Signifikanz
		vom Typ III		Quadrate		
Intercept	F0	12166120,197	1	12166120,197	1772,803	,000
	JITA	2183846,757	1	2183846,757	303,491	,000
	JITT	832,649	1	832,649	499,967	,000
	RAP	276,910	1	276,910	436,858	,000
	PPQ	318,129	1	318,129	511,293	,000
	SPPQ	2034,264	1	2034,264	658,373	,000
	SF0	46585,248	1	46585,248	866,486	,000
	VF0	11002,682	1	11002,682	1013,182	,000
	ShdB	57,131	1	57,131	1040,382	,000
	Shim	5532,451	1	5532,451	840,890	,000
	APQ	5495,257	1	5495,257	1320,787	,000
	SAPQ	29139,225	1	29139,225	2525,537	,000
	VAM	146252,462	1	146252,462	1099,638	,000
	NHR	6,690	1	6,690	2850,231	,000
	VTI	2,918	1	2,918	87,530	,000
	SPI	554258,094	1	554258,094	415,197	,000
RAUCHER	F0	22158,937	2	11079,468	1,614	,209
	JITA	6808,417	2	3404,208	,473	,626

. .

¹³¹ Die SPSS-Ausgaben der Tests finden sich in der Datei "akuparaverteil", eine Zusammenstellung der Variablen, die auf dem 5%-Niveau nicht hinreichend normalverteilt sind, befindet sich im Anhang.

Andernfalls müssten für jeden der 22 akustischen Parameter zwei, verteilungsfreie Test berechnet werden, einer zur Überprüfung des Einflusses des Rauchverhaltens und einer um den Einfluss der Sprechbedingungen zu prüfen.

Die entsprechende SPSS-Ergebnis-Ausgabe befindet sich in der Datei "akufaktorva".

	JITT	,700	2	,350	,210	,811
	RAP	,269	2	,134	,212	,810
	PPQ	,222	2	,111	,179	,837
	SPPQ	2,150	2	1,075	,348	,708
	SF0	,548	2	,274	,005	,995
	VF0	11,512	2	5,756	,530	,592
	ShdB	2,610E-02	2	1,305E-02	,238	,789
	Shim	7,851	2	3,925	,597	,554
	APQ	2,498	2	1,249	,300	,742
	SAPQ	14,669	2	7,334	,636	,534
	VAM	448,973	2	224,486	1,688	,195
	NHR	1,075E-02	2	5,375E-03	2,290	,111
	VTI	8,975E-02	2	4,488E-02	1,346	,269
	SPI	2055,940	2	1027,970	,770	,468
Fehler	F0	363720,306	53	6862,647		
	JITA	381374,401	53	7195,743		
	JITT	88,267	53	1,665		
	RAP	33,595	53	,634		
	PPQ	32,977	53	,622		
	SPPQ	163,761	53	3,090		
	SF0	2849,462	53	53,763		
	VF0	575,555	53	10,860		
	ShdB	2,910	53	5,491E-02		
	Shim	348,702	53	6,579		
	APQ	220,511	53	4,161		
	SAPQ	611,505	53	11,538		
	VAM	7049,032	53	133,001		
	NHR	,124	53	2,347E-03		
	VTI	1,767	53	3,334E-02		
	SPI	70751,164	53	1334,928		

Dieser Ergebnistabelle ist zu entnehmen, dass der Faktor Rauchverhalten die Varianz keines akustischen Parameters signifikant beeinflusst. Allerdings hat die Wechselwirkung zwischen Rauchverhalten und Sprechbedingung offenbar einen signifikanten Einfluss auf die Varianz der akustischen Parameter, wie aus der Berechnung der Innersubjektseffekte hervorgeht:

Multivariate Innersubiektseffekte

Innersubjekteffekt	ibjektserrekte	Wert	F	Hypothese	Fehler	Signifikanz
				df	df	
SPREBED	Pillai-Spur	2,511	12,657	112,000	2534,000	,000
	Wilks-Lambda	,003	29,225	112,000	2311,297	,000
	Hotelling-Spur	34,559	109,318	112,000	2480,000	,000
	Größte	30,875	698,536	16,000	362,000	,000
	charakteristisc					
	he Wurzel nach					
	Roy					
SPREBED *	Pillai-Spur	,723	1,256	224,000	5166,000	,007
RAUCHER	Wilks-Lambda	,457	1,301	224,000	3803,636	,002
	Hotelling-Spur	,850	1,344	224,000	4958,000	,001
	Größte	,322	7,420	16,000	369,000	,000
	charakteristisc					
	he Wurzel nach					
	Roy					

Der Test auf Univariate¹³⁴ wiederum zeigt, dass der einzige akustische Parameter der durch diese Wechselwirkung auf dem 5%-Niveau signifikant beeinflusst wird, VTI ("Behauchtheit") ist (p = 0.012). D.h., bei den anstehenden Korrelationen zwischen den akustischen Parametern und den Alterswerten, ist es wahrscheinlich, dass der Zusammenhang zwischen VTI und den Alterswerten durch Effekte, die auf das Rauchverhalten der Sprecherinnen zurückzuführen sind, überlagert wird.

Die unterschiedlichen Sprechbedingungen haben einen hochsignifikanten Einfluss auf alle akustischen Parameter.

Aus den statistisch etwas unsauberen¹³⁵ a-priori-Paarvergleichen wird ersichtlich, dass sich die akustischen Parameter nicht nur zwischen den Vokalbeispielen und den Beispielen zusammenhängender Rede und innerhalb der Vokale auch nicht nur zwischen Anfängen und Mittelteilen unterscheiden. Vielmehr bestehen – je nach Parameter – Mittelwertsunterschiede zwischen allen Sprechbedingungen.

7.5.5 Interpretation

Vernachlässigt man die Wechselwirkung zwischen Rauchverhalten und Sprechbedingung beim Parameter VTI, dann lässt sich zusammenfassen, dass das Rauchverhalten in dieser Untersuchung keinen signifikanten Einfluss auf die Varianz der akustischen Parameter hat. Dagegen erzeugt die Unterschiedlichkeit der Sprechbedingung hochsignifikante Unterschiede in den akustischen Parametern.

Aus diesem Grund werden zur Bestimmung der Zusammenhänge des Alters mit den akustischen Parametern die Sprechbeispiele nur hinsichtlich ihrer Erzeugungsbedingung und nicht hinsichtlich des Rauchverhaltens der Sprecherinnen gruppiert.

7.6 Korrelation des chronologischen und des perzeptiven Alters mit den akustischen Parametern

7.6.1 Problemstellung

Durch die Analyse im vorangegangenen Kapitel können die Sprechbeispiele so gruppiert werden, dass die Einflüsse der erhobenen Faktoren (Rauchverhalten und Sprechbedingung) innerhalb der Beispielgruppen zu vernachlässigen sind. Das Ziel dieses Abschnittes ist es, zu bestimmen in welcher Weise und wie stark die einzelnen akustischen Parameter mit dem geschätzten und dem chronologischen Alter zusammenhängen.

7.6.2 Hypothesen

Nullhypothese: Innerhalb der einzelnen Sprechbeispielgruppen besteht zwischen dem chronologischen Alter bzw. dem perzeptiven Alter bzw. der Varianz des Geschätzten Alters und den akustischen Parametern kein Zusammenhang.

Alternativhypothesen:

¹³⁴ vgl. Test auf Univariate im Anhang.

¹³⁵ Die Problematik wurde im Kapitel 7.3.5 bereits erläutert. Vgl. Fußnote 78. Die Tabelle der Paarvergleiche ist in der SPSS-Ausgabe "akufaktorva" einzusehen.

- 1. Innerhalb einer Sprechbeispielgruppe besteht ein negativer linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des perzeptiven Alters und der Grundfrequenz der einzelnen Sprechbeispiele.
- Innerhalb einer Sprechbeispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und den Perturbationsmaßen der einzelnen Sprechbeispiele.
- 3. Innerhalb einer Sprechbeispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und den Maßen der spektralen Energieverteilung der einzelnen Sprechbeispiele.
- 4. Innerhalb einer Sprechbeispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und den Maßen der spektralen Energieverteilung der einzelnen Sprechbeispiele.
- 5. Innerhalb einer Sprechbeispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und den Maßen der Tremorintensität der einzelnen Sprechbeispiele.
- 6. Innerhalb einer Sprechbeispielgruppe mit zusammenhängender Rede besteht ein negativer linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und der Artikulationsrate der einzelnen Sprechbeispiele.
- 7. Innerhalb der Text-Beispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und der Pausenzahl der einzelnen Sprechbeispiele.
- 8. Innerhalb der Text-Beispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und der Pausendauer der einzelnen Sprechbeispiele.
- 9. Innerhalb der Text-Beispielgruppe besteht ein positiver linearer Zusammenhang zwischen dem chronologischen Alter der Sprecherin bzw. dem perzeptiven Alter bzw. der Varianz des geschätzten Alters und der Gesamtdauer der einzelnen Sprechbeispiele.

7.6.3 Testwahl und Vorgehensweise

Um Zusammenhänge zwischen je zwei intervallskalierten Variablen zu bestimmen, ist die bivariate Korrelation nach Pearson das geeignete Verfahren, vorausgesetzt die Variablen sind bivariat normalverteilt. Die notwendige Voraussetzung der bivariaten Normalverteilung die gängigerweise¹³⁶ überprüft wird, ist, ob die einzelnen Variablen

¹³⁶ vgl. **Bortz**, Jürgen (1999): *Statistik für Sozialwissenschaftler*. Springer, Heidelberg, S. 204 ff.

normalverteilt sind. Viele der untersuchten akustischen Parameter sind aber nicht hinreichend normalverteilt. ¹³⁷ Um die Zusammenhänge dieser Parameter mit den Alterswerten zu überprüfen, werden Rangkorrelationen nach Kendall ¹³⁸ berechnet.

7.6.4 Ergebnisse¹³⁹

Die Korrelationskoeffizienten aller 456 Korrelationen und deren Signifikanzniveaus sind im Anhang in acht Tabellen verzeichnet – für jede Sprechbeispielgruppe eine Tabelle.

Die Korrelationen, die nicht auf dem 1%-Niveau signifikant sind bzw. deren Korrelationskoeffizient unter 0,3 liegt, werden im Folgenden nur am Rande berücksichtigt. Liegen die Korrelationskoeffizienten unter einem Wert von 0,3, dann ist der Zusammenhang nur als sehr schwach zu bezeichnen. Das Signifikanzniveau wird erhöht, um weniger Zusammenhänge zu erhalten, die doch auf den Zufall zurückzuführen sind. Bei 456 Korrelationen und einem Signifikanzniveau von 5% Prozent, wären es immerhin schon fast 23 (22,8) zufällige Zusammenhänge, denen der Status eines echten zugesprochen würde. Eine Zusammenhangs dieser vermutlich dem Zufall zuzuschreibenden Korrelationen ist z.B. die von chronologischem Alter und der F0-Standardabweichung bei der Bildbeschreibung mit einem Korrelationskoeffizienten von r = -0.244 und einer Signifikanz von p = 3.5%.

7.6.4.1 Die akustischen Korrelate des chronologischen Alters

Welche akustischen Parameter korrelieren mit dem chronologischen Alter?

akus- tischer Para- meter	aa	as	ia	is	ua	us	t	b
F0	-,290	-,301	-,039	-,054	-,176	-,212	-,378	-,506
Jita	,015	-,014	-,014	-,019	-,045	-,060	,160	,344
PPQ	-,094	-,034	-,013	-,045	-,131	-,160	-,032	,123
SD(F0)	-,009	-,006	,396	,233	,054	-,103	-,086	-,244
vF0	,093	,056	,328	,202	,093	,013	,050	-,072
ShdB	,124	,132	,109	-,074	-,001	,036	,218	,519
Shim	,086	,126	,039	-,007	,007	,039	,211	,466
APQ	,154	,186	,043	,002	,009	,033	,198	,551
sAPQ	,374	,326	,296	,138	-,015	-,046	,109	,473
vAm	,166	,239	,185	,192	,183	,165	,012	,220
FTRI	,433	,291	,469	,434	,211	,261	-,061	,038
AR							-,362	-,076
t							,432	
t(Pau)							,400	
N(Pau)							,277	

Korrelationen, die auf dem 5%-Niveau signifikant sind, sind **fett** gedruckt. Sind sie auf dem 1%-Niveau signifikant, oder größer als 0.3, dann sind sie in der ihrer Tabellenzelle rechts ausgerichtet. Trifft beides zu, dann sind sie zusätzlich *kursiv* gedruckt.

¹³⁷ Die Zusammenstellung der nicht normalverteilten Variablen findet sich im Anhang. Die Ergebnisse der entsprechenden Kolmogorv-Smirnov-Tests befinden sich in der Datei "akuparaverteil".

vgl. **Bortz**, Jürgen & **Lienert**, Gustav A. (1998): *Kurzgefaßte Statistik für die klinische Forschung*. Springer, Heidelberg, S. 247 ff.

¹³⁹ Die entsprechenden SPSS-Ausgaben heißen "akukorr[Sprechbeispielgruppe]" und befinden sich auf der Daten-CD.

71

7.6.4.2 Die akustischen Korrelate des perzeptiven Alters (pro Sprechbedingung)

Welche akustischen Merkmale der Stimme ermöglichen Hörern das Alter einer Sprecherin einzuschätzen?

akus-	aa	as	ia	is	ua	us	t	b
tischer								
Para-								
meter								
F0	-,481	-,498	-,016	-,105	-,270	-,461	-,396	-,487
Jita	,013	,070	-,195	-,019	,064	,081	,211	,374
Jitt	-,127	,001	-,225	-,036	,048	-,023	,089	,241
sPPQ	,139	,110	-,027	,187	,116	,153	,084	,250
SD(F0)	-,030	-,005	,233	,235	,092	,112	-,073	-,157
vF0	,154	,138	,177	,225	,195	,333	,076	,019
ShdB	,327	,377	-,005	,042	,036	,154	,231	,548
Shim	,256	,361	-,077	,108	,006	,156	,258	,505
APQ	,338	,419	-,018	,131	,036	,199	,232	,602
sAPQ	,418	,469	,278	,339	,151	,284	,140	,553
vAm	,139	,226	,077	,194	,102	,122	,064	,318
NHR	,238	,252	,086	,195	,056	,169	,099	,110
SPI	,418	,327	-,065	-,052	-,153	,039	,135	,008
FTRI	,364	,208	,366	,563	,216	,594	-,040	-,009
AR							-,415	-,165
t							,512	
t(Pau)			_	_			,495	
N(Pau)		_	_	_			,190	_

Korrelationen, die auf dem 5%-Niveau signifikant sind, sind **fett** gedruckt. Sind sie auf dem 1%-Niveau signifikant, oder größer als 0.3, dann sind sie in der ihrer Tabellenzelle rechts ausgerichtet. Trifft beides zu, dann sind sie zusätzlich *kursiv* gedruckt.

7.6.5 Interpretation

7.6.5.1 Maße der Grundfrequenzperturbation

Wie lt. der einschlägigen Literatur zu erwarten war, bestehen nur vereinzelt bzw. geringe Zusammenhänge zwischen der F0-Perturbation und Alter. Am deutlichsten ausgeprägt sind die Werte der relativen (vF0) und absoluten (SD(F0)) F0-Standardabweichung im Zusammenhang mit chronologischem Alter bei den /i/-Anfangsbeispielen, sowie von vF0 bei den /u/-Mittelstücken im Zusammenhang mit perzeptivem Alter. Diese signifikanten Zusammenhänge scheinen etwas zufällig verteilt, was für einen generellen aber sehr schwachen Zusammenhang zwischen den F0-Perturbationsmaßen und Alter spricht. Dieser Zusammenhang könnte auch sehr plausibel darauf zurückgeführt werden, dass die F0-Perturbationen eher ein Maß des gesundheitlichen Zustandes sind, der seinerseits wieder mit Alter im Zusammenhang steht. Da der gesundheitliche Zustand aber nicht erhoben wurde, bleibt dies Spekulation.

Der Zusammenhang zwischen absolutem Jitter (Jita) innerhalb der Bildbeispiele und chronologischem Alter ist wahrscheinlich auf den großen Zusammenhang mit der Grundfrequenz dieser Beispielgruppe zurückzuführen, da gerade Jita sehr abhängig von der Grundfrequenz ist.

7.6.5.2 Maße der Amplitudenperturbation

Zunächst fällt auf, dass die Amplitudenperturbationsmaße auch bei freier Rede die höchsten Zusammenhänge sowohl mit dem chronologischen als auch mit dem geschätzten

Alter aufweisen, obwohl diese Maße eigentlich nur zur Analyse angehaltener Vokale vorgesehen sind. Was auch verwundert, ist, dass die Amplitudenperturbationsmaße bei der durch den vorgegebenen Text kontrollierten Rede einen nur noch marginalen Zusammenhang mit dem perzeptiven Alter aufweisen und keinen mehr mit dem chronologischen Alter. Die Frage, die sich daraus ergibt, ist also, weshalb die Zunahme der Amplitudenperturbation mit dem Alter nur festzustellen ist, wenn ein Bild beschrieben wird und nicht beim Lesen eines Textes, zumal dieser Unterschied nicht mit der größeren Lautstärkeveränderung von einem Wort zum nächsten zu erklären ist. Das Maß, das Amplitudenveränderungen in dieser zeitlichen Größenordnung bestimmt, ist die relative Amplitudenstandardabweichung (vAm). Gerade dieser Stimmparameter ist das einzige Amplitudenperturbationsmaß, das innerhalb der Bildbeschreibung nicht mit dem chronologischen Alter korreliert. Den stärksten Zusammenhang Amplitudenperturbationsquotient (APQ), der die Amplituden von jeweils fünf Perioden mittelt und diese Werte vergleicht, also Amplitudenunterschiede in einer zeitlichen Auflösung von etwa 25 ms vergleicht.

Abgesehen von der freien Rede, sind die einzig erwähnenswerten Zusammenhänge von Amplitudenstabilitätsmaßen mit dem chronologischen Alter diejenigen, innerhalb der /a/-Realisationen des geglätteten Amplitudenperturbationsquotienten (SAPQ). Die relative Amplitudenvariabilität ist über alle Beispielgruppen hinweg nur als latent korreliert mit dem chronologischen Alter zu bezeichnen.

Bezüglich des perzeptiven Alters gibt es mehr signifikante und höhere Korrelationen der Amplitudenperturbationsmaße als mit dem chronologischen Alter. V.a. bei den /a/-Beispielen wird von den Hörern ein Zusammenhang der Amplitudenstabilität mit dem Alter vermutet, obwohl dieser (in der geschätzten Höhe) nicht der Realität entspricht. Aber auch das perzeptive Alter zeigt, wie auch das chronologische Alter, kaum Zusammenhänge mit vAm und die höchsten stimmstabilitätsbezogenen Zusammenhänge mit APQ bzw. SAPQ.

7.6.5.3 Tremormaße

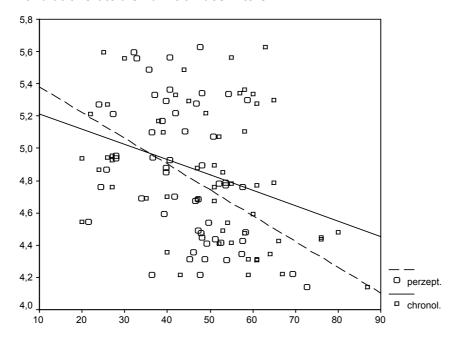
Die bisher nicht im Zusammenhang mit Alter untersuchten Tremormaße halten eine freudige Überraschung bereit: Obwohl nur etwa bei der Hälfte aller Vokalbeispiele eine Extraktion möglich war, erweist sich der Intensitätsindex des F0-Tremors (FTRI) für die Gruppe aller Vokalbeispiele als bester Indikator des chronologischen und des perzeptiven Alters! D.h. der FTRI korreliert nur bei den /a/-Mittelteilen schlechter (und auch nur geringfügig) mit dem chronologischen Alter als die Grundfrequenz, welche nach wie vor als das Maß mit dem stärksten Zusammenhang mit dem Alter gilt. Als Korrelat des perzeptiven Alters ist der FTRI bei den /a/-Mittelteilen nicht signifikant, dafür aber bei den beiden /i/-Gruppen, wo die Grundfrequenz als gegenstandslos für die Beurteilung des Alters angesehen wird und auch ist, wie der Vergleich mit den Korrelationskoeffizienten beim chronologischen Alter zeigt.

Bei den Redebeispielen hingegen besteht kein Zusammenhang zwischen dem FTRI und Alter.

Auch der Intensitätsindex des Amplitudentremors zeigt für keine einzige der berechneten Korrelationen einen signifikanten Zusammenhang.

7.6.5.4 Maße der spektralen Energieverteilung

Das Maß für spektrales Rauschen (NHR) zeigt keinen Zusammenhang mit dem chronologischen Alter und korreliert nur bei den /a/-Beispielen signifikant mit dem perzeptiven Alter. Die beiden Korrelationskoeffizienten sind aber kleiner als 0,3, weshalb NHR auch als Maß des perzeptiven Alters nicht aussagekräftig ist.


Behauchtheit (VTI) zeigt keinerlei Zusammenhang mit dem Alter, dafür aber mit Rauchverhalten, wie aus der Varianzanalyse hervorgeht.

Der Index für weiche Phonation (SPI), der im Gegensatz zu den anderen beiden Energieverteilungsmaßen kein Quotient aus unmodulierter Energie zu periodischen Energieanteilen ist, sondern die periodischen Energieanteile von zwei unterschiedlichen Frequenzbereichen ins Verhältnis setzt, zeigt das gleiche Korrelationsmuster, wie NHR. Mit dem Unterschied, dass beide Korrelationen mit dem perzeptiven Alter innerhalb der /a/-Beispiele hochsignifikant und nicht zu vernachlässigen sind.

7.6.5.5 Sprechgeschwindigkeit

Die Artikulationsrate (AR), als Maß der Sprechgeschwindigkeit, ist nur bei der kontrollierten Rede ein Indikator für chronologisches und perzeptives Alter. Bei der freien Rede zeigt sich kein systematischer Zusammenhang.

Artikulationsrate als Funktion des Alters

Einen größeren Zusammenhang mit dem Alter zeigt allerdings die Dauer der Pausen. Noch größer ist derjenige mit der Gesamtdauer, die benötigt wurde, um die Textpassage zu lesen. Alle drei Maße der Sprechgeschwindigkeit korrelieren höher mit dem perzeptiven Alter.

7.6.5.6 Die Grundfrequenz

Die Grundfrequenz der /i/-Beispiele ist unabhängig vom Alter. Bei den /a/- und bei den /u/- Beispielen ist der geschätzte Zusammenhang stärker als der tatsächliche. Bei den Redebeispielen ist er nahezu identisch.

Es zeigt sich eine deutlich höhere Korrelation zwischen Alter und der Grundfrequenz der freien Rede als mit den Beispielen kontrollierter Rede.

8 Diskussion der Ergebnisse

8.1 Die schwerpunktmäßig behandelten stimmlichen Korrelate des Alterns

8.1.1 Die Artikulationsrate als Korrelat des geschätzten Alters

Die AR, gemessen an gelesenen Texten, sinkt mit zunehmendem perzeptiven (und chronologischen) Alter hochsignifikant ab.

Allerdings gibt es zwei Einwände, die die Aussagekraft der AR als Indikator des Alters einschränken: Ersten sind die Korrelationskoeffizienten der Dauermaße höher als derjenige der Artikulationsrate, was darauf schließen lässt, dass die Zählung der gesprochenen Silben zur Berechnung eines Tempomaßes nicht ausreichend genau ist. Zweitens korreliert die AR bei freier Rede nicht mit dem Alter, was bedeutet, das der entscheidende verzögernde Faktor der sich mit dem Alter einstellt, nicht auf die veränderte Physiologie des Sprechapparats zurückzuführen ist.

8.1.2 Die Amplitudenstandardabweichung als Korrelat des chronologischen Alters

Die von Linville geäußerte Vermutung, die Perturbationsmaße, die über größere Zeitfenster bestimmt werden, speziell die Amplitudenstandardabweichung, sei das geeignetste Maß zur Altersbestimmung anhand der Stimme, konnte durch diese Untersuchung nicht bestätigt werden.

Es zeigte sich vielmehr, dass alle Perturbationsmaße mit kleinerer Zeitfensterung besser mit Alter korrelieren als die relative Amplitudenstandardabweichung. Möglicherweise bezog sich die Vermutung Linvilles nicht auf den Algorithmus der relativen Amplitudenstandardabweichung (vAm) wie er in MDVP implementiert ist, sondern auf die absolute Amplitudenstandardabweichung oder auf den Amplitudenvariabilitätsindex nach Deal & Emanuel¹⁴⁰. Aus der eingesehenen Literatur Linvilles wurde das aber nicht klar.

8.1.3 Spektrales Rauschen als Korrelat des geschätzten Alters

Spektrales Rauschen, gemessen durch den Noise to Harmonic Ratio (NHR) ist nicht nur mit dem chronologischen Alter unkorreliert, sondern auch mit dem perzeptiven.

8.2 Unerwartete Ergebnisse

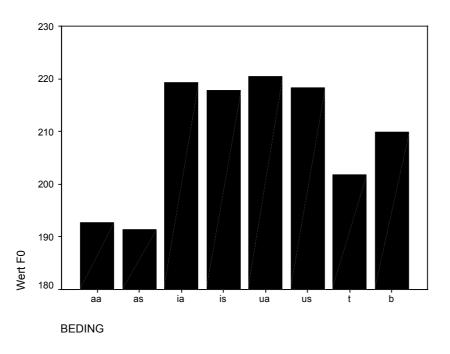
8.2.1 Intensität des F0-Tremors

Nachdem Xue & Deliyski $(2001)^{141}$ aus ihrem Vergleich junger und alter Stimmen mit den MDVP-Parametern ausdrücklich die Tremormaße aus ihrer Studie herausgelassen haben

¹⁴⁰ vgl. **Deal**, R. & **Emanuel**, F. (1978): Some waveform and spectral features of vowel roughness. in: Journal of Speech and Hearing Research, 21, 250-264 und **Baken**, R. J. (1987): Clinical Measurement of Speech and Voice. Allyn and Bacon, Boston, London, Toronto, Sidney, Tokyo, Singapore, S. 116

Xue, Steve An & Deliyski, Dimitar (2001): Effects of Aging on Selected Acoustic Voice Parameters:
 Preliminary Normative Data and Educational Implications. Educational Gerontology, 21, 159-168.
 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/mdvpoyedge.PDF)

("[...]they lack sufficient validity report in the current literature."), ist nach den positiven Ergebnissen bzgl. des Intensitätsindex des F0-Tremors hier eine weitere Untersuchung dieses Maßes bzgl. seiner Verlässlichkeit in jedem Fall ratsam. Allerdings ist der Zusammenhang dieses Maßes mit Alter nicht zu leugnen, auch wenn nicht klar ist, was es misst. Eine Untersuchung der Tremorfrequenzen bzgl. ihres Zusammenhangs mit Alter wurde auch hier nicht unternommen. Dies sollte nachgeholt werden.


8.2.2 Anwendbarkeit der Maße zur Untersuchung angehaltener Vokale bei freier Rede

Da die Amplitudenperturbationsmaße bei freier Rede hochsignifikante mittelhohe Korrelationen mit dem chronologischen und dem perzeptiven Alter aufweisen, sollte auch überprüft werden, wie es zu diesen Zusammenhängen kommt bzw. welche Amplitudendifferenzen in diese Maße einfließen, da die Perturbationsmaße über freie Rede berechnet, nicht einfach zu interpretieren sind. Aber auch hier gilt, dass die vorgefundene Häufung der hochsignifikanten Korrelationen mit den Alterswerten nur sehr schwer als zufällig zu bezeichnen ist. D.h. die Amplitudenperturbationsmaße erhoben an freier Rede sind ein guter Indikator des Alters.

8.3 Weitere Vergleiche mit Ergebnissen aus der Literatur

8.3.1 Grundfrequenz

Der Zusammenhang zwischen chronologischem Alter und Grundfrequenz zeigt sich nicht bei den /u/- und /i/-Beispielen. Das liegt sehr wahrscheinlich am Phänomen der "intrinsischen Tonhöhe", welches bewirkt, dass einzeln erzeugte Vokale mit hoher Zungenstellung auch mit höherer Grundfrequenz phoniert werden. Auf die Untersuchung des Alters wirkt sich das deshalb aus, weil offensichtlich die meisten Sprecherinnen, unabhängig ihres Alters und ihrer normal gesprochenen Tonhöhe, die einzeln gesprochenen Vokale mit hoher Zungenstellung ähnlich hoch ansetzten.

8.3.2 Auswirkungen des Rauchens

Dass das Rauchen eine Stimme älter macht, konnte in dieser Untersuchung trotz gegenteiliger Literaturlage nicht bestätigt werden. Die Altersschätzungen der Hörer sind für Raucher nicht signifikant höher. Der einzige akustische Parameter der durch das Rauchverhalten beeinflusst wird, ist Behauchtheit (VTI).

8.3.3 Genauigkeit der Hörerschätzungen

Die genaueste Altersschätzung ist anhand der kontrollierten Redebeispiele möglich, gefolgt von der feien Rede. Die Ungenauigkeit der Vokalbeispiele ist im Extremfall (bei den /a/Mittelteilen) mit einer mittleren Differenz von ca. 10,5 Jahren fast doppelt so hoch wie bei den Schätzungen anhand der kontrollierten Rede.

Dies entspricht ziemlich genau den Erwartungen aufgrund der Literatur.

8.4 Deutung des Einflusses der Vokalart auf die Güte der Schätzungen

Durch die Kenntnis der Zusammenhänge der Grundfrequenz mit dem chronologischen bzw. dem geschätzten Alter lässt sich nun auch die Unterschiedlichkeit der Güte der Hörerschätzungen zwischen den Vokalarten deuten: Das Ergebnis war, dass die /i/Beispiele bessere Schätzungen des chronologischen Alters zulassen als die /a/-Beispiele, deren Schätzungen immerhin noch besser waren, als die anhand der /u/-Beispiele. Die Korrelationen der Grundfrequenz dieser Beispiele mit den Alterswerten zeigen nun, dass beim /u/ zwar von den Hörern ein Zusammenhang zwischen Alter und Grundfrequenz angenommen wurde, aber de facto keiner besteht. Beim /a/ bestand zwar ein Zusammenhang zwischen Alter und Grundfrequenz, er wurde von den Hörern aber überschätzt. Beim /i/ dagegen besteht weder ein Zusammenhang zwischen F0 und chronologischem Alter noch wurde von den Hörern einer angenommen.

8.5 Das Verhältnis zwischen Korrelaten des chronologischen Alters und des perzeptiven Alters

Aus dem Vergleich der akustischen Korrelate des chronologischen Alter mit denen des perzeptiven Alters wird deutlich, dass die beiden Altersformen Zusammenhänge mit den gleichen Parametern aufweisen. Die Korrelationen mit dem perzeptiven Alter sind aber in der Regel höher.

Mit dem anfangs aufgestellten Modell lässt sich das folgendermaßen erklären: Die akustischen Parameter wie auch die gemittelten Hörerschätzungen sind Merkmale des Stimmalters. Durch die Mittelung der Hörerschätzungen nivellieren sich die Störeinflüsse auf Hörerseite. Je mehr Hörerurteile gemittelt werden desto geringer werden die Fehler der Schätzung des Stimmalters. Bezieht man das Stimmalter auf einzelne Beispiele, so sind die Stimmalterswerte Ausprägungen eines momentanen Zustandes Stimmapparats, der nicht alleine auf das chronologische Alter der Sprecherin zurückzuführen ist. D.h. die Stimmalterswerte eines stimmlichen Beispiels sind fehlerbehaftete Abbildungen des chronologischen Alters. Die entsprechenden Fehlerfaktoren, wozu in diesem Fall z.B. auch das biologische Alter der sprechenden Person zählt, wurden in dieser Untersuchung nicht ausreichend kontrolliert.

D.h. der Zusammenhang zwischen Alter und Stimmalter wird durch größere Fehler überlagert als der zwischen Stimmalter und mittlerem geschätzten Alter. Zwischen Stimmalter und den akustischen Parametern sind die Fehler noch geringer. Deshalb korrelieren die akustischen Parametern mit den gemittelten Hörerschätzungen höher als mit dem chronologischen Alter.

8.6 Wie verändern sich nun die Stimmen von Frauen mit zunehmendem Alter?

Die Parameter, die mit dem chronologischen und dem perzeptiven Alter der Sprecherinnen korrelieren, sind die Amplitudenperturbation, die Intensität des Grundfrequenz-Tremors sowie die Grundfrequenz, als auch bedingt die Grundfrequenzperturbation und die Artikulationsrate. Sowohl Grundfrequenz-, als auch Amplitudenperturbation werden am trefflichsten durch Begriffe wie Heiserkeit und Rauheit beschrieben, Tremor mit Zittern, die Artikulationsrate beschreibt die Sprechgeschwindigkeit und die Grundfrequenz die Tonhöhe.

Erwachsene Frauen sprechen also mit zunehmendem Alter zittriger, tiefer, rauer, und lesen langsamer laut vor.

9 Schwierigkeiten/ Probleme dieser Untersuchungen

9.1 Personenbezogene Daten der Sprecherinnen

Außer dem chronologischen Altern gibt es viele Faktoren, die die Stimme beeinflussen. Als Beispiele seien nur der emotionale Zustand und der gesundheitliche Zustand genannt. Da es aber sehr aufwendig ist, diese Zustände verlässlich zu operationalisieren, wurde neben dem chronologischen Alter nur das Rauchverhalten der Sprecherinnen erhoben – und dieses auch nur in drei Stufen.

9.2 Qualität der Aufnahmen

Ursprünglich war geplant, die Aufnahmen im reflexionsarmen Raum durchzuführen. Der einzige verfügbare Raum dieser Art, wurde aber während der Zeit renoviert, in der die Stimmen für diese Untersuchung aufzuzeichnen waren. In dieser Untersuchung wurde deutlich, dass zumindest einige der akustischen Parameter trotzdem mit Alter überzufällige Zusammenhänge zeigen. Dadurch ist aber nicht ausgeschlossen, dass diese Zusammenhänge stärker ausfallen, bzw. dass einige Parameter überhaupt erst mit Alter korrelieren, wenn sie an störungsfreien Aufnahmen gemessen werden.

9.3 Missverständliche Hörtestanleitung

Trotz der doch sehr ausführlichen Erklärungen, wie die Beurteilung der Beispiele vorzunehmen ist, kam es zu einem¹⁴² Missverständnis. Ein Hörer interpretierte den Satz "Falls Sie glauben eine Sprecherin erkannt zu haben, erübrigt sich die Einschätzung des Alters." in der Weise dass, Beispiele unbewertet bleiben sollten, wenn man glaubt, dass bereits ein Beispiel von derselben Sprecherin zu hören war.

9.4 Parameter extraktion

9.4.1 Automatische Gewinnung akustischer Größen zur

Stimmbeschreibung

Bei eingehender Betrachtung der Parameterextraktion durch MDVP offenbaren sich Fehler. Zum Beispiel kommt es vor, dass einzelne Punkte der Grundfrequenzextraktion den doppelten Wert der eigentlichen Grundfrequenz angeben¹⁴³. Dieses Problem beschränkt sich leider weder auf die Algorithmen der Firma KAY, noch auf die Grundfrequenzextraktion. Hier ist es nur besonders gravierend, da die Grundfrequenz in zahlreiche andere Maße mit einfließt- auch in die der Amplitudenperturbation, da um den

¹⁴² richtiger ist, zu mindestens einem; weitere sind mir nicht bekannt.

¹⁴³ Sehr aufschlussreich ist es, von MDVP einen Sinussweep erzeugen zu lassen und diesen unter MDVP einer Grundfrequenzanalyse zu unterziehen: Der synthetisch erzeugte gleichmäßige Anstieg der Grundfrequenz gleicht in der Extraktion einer Sägezahnfunktion mit immer wiederkehrenden Frequenzsprüngen auf den halben Wert des vorangegangenen Extraktionspunktes. Zwischen diesen Sprüngen ist dafür der extrahierte Anstieg der Grundfrequenz doppelt so steil wie der tatsächliche.

Unterschied zwei aufeinander folgender Amplitudenwerte bestimmen zu können, zunächst klar sein muss, welches der lokalen Maxima eines realen Zeitsignals als Amplitude einer Einzelschwingung zu werten ist und welches nicht.

Um diese Auswertungsfehler zu vermeiden, wäre es also notwendig, die Parametergewinnung manuell oder zumindest durch ein weiteres automatisches Verfahren (mit möglichst unterschiedlichen Algorithmen) zu überprüfen.

9.4.2 Bestimmung der gesprochenen Silben

Auch die Zahl der gesprochenen Silben ist nicht immer eindeutig zu bestimmen, obwohl die Bestimmung nicht automatisch erfolgte. So ist z.B. bei einigen Textbeispielen nicht auszumachen, ob "Helen'nstraße" oder "Helen'straße" artikuliert wird¹⁴⁴, ob also nur der Vokal der dritten Silbe ausgelassen wurde, oder auch noch der Nasal der sonst die Silbe noch tragen würde.

¹⁴⁴ z.B. bei Sprecherin3, wo "Helenenstraße" als fünfsilbiges Wort gewertet wurde, obwohl die spezielle Artikulation auch als viersilbig angesehen werden könnte

10 Implikationen für weitere Arbeiten

10.1 Weitere Auswertungsmöglichkeiten der Daten dieser Untersuchung

10.1.1 Verbesserung der Extraktionsfehler von MDVP

Da durch die grobe Überprüfung der Extraktionsgenauigkeit z.B. der Grundfrequenz bereits Fehler der automatischen Erkennung zu Tage traten, und gerade die Grundfrequenz in die Berechnung vieler anderer Parameter einfließt, sollte zumindest die Grundfrequenzextraktion durch ein oder zwei weitere Verfahren überprüft werden. Es ist möglich, dass dadurch einige Zusammenhänge zwischen Alter und akustischen Parametern besser und evtl. einige überhaupt erst erkennbar werden.

10.1.2 Untersuchung des Einschwingvorgangs

Wie aus den Hörerurteilen sowie des Vergleichs der geschätzten Alterswerte mit den chronologischen hervorgeht, tragen die Vokalanfänge mehr Information über das Alter, als die Mittelteile. Durch die Analyse der akustischen Parameter konnte kein stichhaltiger Anhaltspunkt entdeckt werden, wodurch sich diese Unterschiede begründen ließen. Aus diesem Grund ist eine Analyse des Einschwingvorgangs mit anderen Maßen oder anderen Methoden, wie z.B. der Elektroglottographie indiziert.

10.1.3 Bestimmung der Relevanz des Ausschwingvorgangs

In dieser Untersuchung wurden die Anfänge mit den Mittelteilen derselben Vokalproduktion verglichen, um Auskunft darüber zu erhalten, ob der Einschwingvorgang mehr Information über das Alter einer Sprecherin preisgibt als ein quasistationärer Abschnitt. Wenn zunehmendes Alter den gleichmäßigen Fluss aller Bewegungen stört, ist aber anzunehmen, dass auch das Ende einer Phonation, der gleichmäßige Übergang von Schwingung zu Nichtschwingung, in größerem Maße beeinflusst wird als das Aufrechterhalten der Phonation. Das würde bedeuten, dass auch das Ende einer Vokalphonation mehr Information über das Alter in sich trägt als der Mittelteil. Eine perzeptive Analyse des Ausschwingvorganges würde Aufschluss über diese Vermutung geben.

10.1.4 Erhebung von Maßen zur Artikulationsbeschreibung

10.1.4.1 Genauere Maße der Artikulationsgeschwindigkeit

Wie in Kapitel 9.4.2 kurz erwähnt wurde, ist die Artikulationsgeschwindigkeit in Silben pro Sekunde nur ein erstes Maß um artikulatorische Veränderungen durch das Alter zu erfassen. Eine genauere Bestimmung der Artikulationsgeschwindigkeit in Phonemen pro Sekunde oder auch das Verhältnis der Dauer einzelner Lautklassen zu fortschreitendem Alter kann aufschlussreicher sein. Da die Artikulationsrate in der Textbedingung sowohl mit dem chronologischen als auch mit dem perzeptiven Alter Zusammenhänge aufweist, ist eine nähere Untersuchung vielversprechend.

10.1.4.2 Maße der Artikulationsgenauigkeit

Da die Zunahme undeutlicher Artikulation gerade im hohen Alter ein oft beobachtetes Phänomenen bietet sich deren quantitative Erfassung Lautzahlminderungskoeffizienten und über eine genaue Analyse der Assimilationen und Elisionen¹⁴⁵ zur Bestimmung stimmlicher Merkmale des Alterns an.

10.1.5 Erhebung der intrapersonellen Variabilität bzgl. verschiedener Perturbationsmaße

Da über viele Beschreibungsgrößen der Stimme (sowie anderer physiologischer Maße) hinweg zu beobachten ist, dass sich fortgeschrittenes Alter immer wieder in größerer Variabilität niederschlägt¹⁴⁶, könnte der Versuch unternommen werden, bisher in der Literatur noch nicht erwähnte Variabilitätsmaße, nämlich die intrapersonelle Varianz verschiedener Perturbationsmaße als Funktion des Alterungsprozesses zu untersuchen. V.a. die Ergebnisse bzgl. der Amplitudenperturbationsmaße in der Sprechbedingung freie Rede ermuntern dazu. So wäre es z.B. möglich, die Varianz der Perturbationswerte verschiedener Realisationen eines Vokals (die einem Satz entnommen sind, oder auch mehrmals eingesprochen wurden) zu bestimmen und diese Werte als Funktion des Alterns zu untersuchen.

Diese Idee entstand aus den Hinweisen vieler Forscher¹⁴⁷ darüber, dass die interindividuell in den Gruppen erhobene Varianz der Jitter- und Shimmerwerte, für die Gruppe älterer Personen beträchtlich höher ist als für die Gruppe jüngerer Personen. Wenn also Perturbationsmaße der Einzelpersonen innerhalb der Gruppe der Alten (im Vergleich zur Gruppe der Jungen) stark voneinander abweichen, könnte es doch auch sein, dass sie innerhalb einer älteren Person von Phonation zu Phonation unterschiedlicher sind, als bei einer jüngeren. Dieser Vermutung konnte hier nicht mehr nachgegangen werden.

Eine weniger arbeitsintensive¹⁴⁸ aber auch nicht so vielversprechende Variation dieses Gedankens ist, den Glättungsfaktor der Maße SAPQ (und SPPQ) systematisch zu variieren, so dass nicht nur, wie voreingestellt, über 55 Perioden gemittelt wird, bevor diese Mittewerte verglichen werden, sondern auch über größere und kleinere Zeitfenster Perturbationen bestimmbar werden.

Erweiterter Perzeptionstest 10.1.6

Eine mögliche Ursache der Unstimmigkeit im Zusammenhang mit der Wahrnehmung von Jitter und Shimmer könnte sein, dass "Rauhigkeit" als auch "Heiserkeit" als Begriffe zu

¹⁴⁵ vgl. hierzu **Kienast**, Miriam (1998): Segmentelle Reduktion bei emotionaler Sprechweise. Magisterarbeit im Fachgebiet Kommunikationswissenschaft der TU Berlin

Findings of increased variability in elderly speakers are not uncommon in studies of age-related differences in both acoustic and physiological measures." aus Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 176

147 vgl. **Linville**, Sue Ellen (2001): *Vocal Aging*. Singular Thomson Learning, San Diego, S. 176

¹⁴⁸ Um Shimmerwerte einzelner Vokale zusammenhängender Rede miteinander zu vergleichen muss jeder Vokal einzeln segmentiert, ausgeschnitten, analysiert und die gewonnenen Werte in ein Statistikprogramm geladen, um dort weiterverarbeitet zu werden...!

undifferenziert sind, als dass sich exakt definierbare akustische Maße diesen Begriffen zuordnen ließen. Dafür spräche die Vermutung von Deal & Emanuel (1978) bzw. Hillenbrand (1988)¹⁴⁹, die Wahrnehmungseffekte von Jitter und Shimmer könnten additiv sein, als auch die Tatsache, dass auch spektrales Rauschen mit ähnlichen Begriffen umgangssprachlich beschrieben wird. Eine Wahrnehmungsbeurteilung mittels eines semantischen Differentials mit differenzierteren Adjektivpaaren (sofern solche gefunden werden können) könnte eventuell diese Unstimmigkeit beheben. "Further study is required before a definitive statement can be made regarding the significance of roughness as a perceptual marker of perceived age."¹⁵⁰

Zur Bearbeitung dieses Problems könnten in einem Wahrnehmungstest die erhobenen Sprachbeispiele gehört und von den Hörern bzgl. des chronologischen Alters und eines semantischen Differentials beurteilt werden. Das semantische Differential soll eine Einschätzung des Alters der jeweiligen Sprecherin, wie auch Bewertungen opponierender Adjektivpaare erfassen, von denen angenommen wird, dass sie Wahrnehmungsphänomene charakterisieren, die für die Einschätzung des Alters aufgrund der Stimme relevant sind. In einem weiteren Schritt sollten dann die Zusammenhänge der Adjektivoppositionen mit dem geschätzten Alter sowie der Adjektivoppositionen mit den akustischen Merkmalen statistisch geprüft werden.

10.1.7 Erstellung einer multiplen Regressionsgleichung

Um zu genaueren Altersbestimmungen zu gelangen, als dies durch die Berechnung einer Regression mit einzelnen akustischen Parametern oder auch geschätztem Alter möglich ist, wäre es sinnvoll, mehrere mit Alter hochkorrelierende Parameter in eine multiple Regression einzubinden.

10.2 Fragestellungen, die zusätzliche Aufzeichnungen von Stimmen erfordern

10.2.1 Überprüfung der Verlässlichkeit der Aufnahmen

Um zu überprüfen, wie verlässlich die mit relativ geringem Aufwand erstellten Aufnahmen der Stimmen sind, wäre es wünschenswert, einige der Sprecherinnen der vorliegenden Untersuchung ein weiteres Mal in einer möglichst reflexions- und störschallarmen Umgebung aufzunehmen. Da ein möglicher Unterschied der Parameter einer zweiten Aufnahme aber auch durch eher kurzfristige sprecherinterne Veränderungen (z. B. des emotionalen, gesundheitlichen Zustandes) des Sprechers zustande kommen kann, sollte man noch eine Aufnahme in der ursprünglichen Umgebung, mit möglichst geringem zeitlichen Abstand zu der Aufnahme in der kontrollierten Umgebung, durchführen. Kommt es zu keinen signifikanten Unterschieden zwischen den Parametern aus den mehrmaligen Aufnahmen, dann kann davon ausgegangen werden, dass die in dieser Untersuchung

_

¹⁴⁹ zitiert nach Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 196

¹⁵⁰ Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego, S. 196

gewählte Aufnahmeprozedur den Anforderungen (an eine akustische Untersuchung der Veränderungen der Stimme durch das Altern) gerecht wird. Eine erneute Einschätzung des Alters ist im Falle eines nicht signifikanten Unterschiedes nicht erforderlich, da davon ausgegangen werden kann, dass der Mensch Störeinflüsse wesentlich besser kompensieren kann als automatische Analysatoren.

10.2.2 Erhöhung der Validität

Um die Ergebnisse dieser Untersuchung zu validieren, ist es nötig, die durchgeführten Messungen mit anderen Sprecherinnen und anderen Hörern zu wiederholen. Dies erscheint v.a. für die Sprecherinnen notwendig, da die Sprecherinnengruppe dieser Untersuchung nicht als Zufallsstichprobe aus der Grundgesamtheit angesehen werden kann, für welche die Ergebnisse Geltung finden sollten.

Eine Variation der Validierung bestünde in einem erneuten Wirkungstest mithilfe der durch Resynthese in den gefundenen altersunterscheidenden Merkmalen systematisch veränderten Sprachbeispiele.

10.2.3 Relevanzprüfung gefundener Parameter durch Resynthese

Sind einige Parameter der Stimme bekannt, die die Erkennung des Alters des Sprechers beeinflussen, kann eine Stimme mit künstlich variierten Parametern, resynthetisiert werden, um zu ergründen, welcher Parameter in welchem Maße verändert werden muss, um einen bestimmten Unterschied in der Wahrnehmung des Alters zu erzeugen.

III. ANHANG

11 Literaturverzeichnis

- **Baken**, R. J. (1987): *Clinical Measurement of Speech and Voice*. Allyn and Bacon, Boston, London, Toronto, Sidney, Tokyo, Singapore
- **Beck**, J. M. (1997): *Organic Variation of the Vocal Apparatus*. in: The Handbook of Phonetic Sciences [Hrsg.: Hardcastle W. J. & Laver J.], 256-297; Blackwell Publishers, Oxford
- **Benjamin**, B. (1982): *Phonological performance in gerontological speech*. in: Journal of Psycholinguistic Research, 11, 159-167
- **Benjamin**, B. (1997): *Speech production of normally aging adults*. in: Seminars in Speech and Language, 18, 135-141
- **Bielamowicz**, S. **et al.** (1996): Comparison of voice analysis systems for perturbation measurement. in: Journal of speech and hearing research, 39, 126-134
- **Bortz**, Jürgen & **Döring**, Nicola (1995): Forschungsmethoden und Evaluation für Sozialwissenschaftler. Springer, Berlin
- **Bortz**, Jürgen & Lienert, Gustav A. (1998): *Kurzgefaßte Statistik für die klinische Forschung*. Springer, Heidelberg
- Bortz, Jürgen (1999): Statistik für Sozialwissenschaftler. Springer, Berlin
- **Bühl**, A. & **Zöfel**, P. (2000): SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. Addison-Wesley, München
- **Brown**, W., Morris, R. & Michel, J (1989): Vocal jitter in young and aged female voices. in: Journal of Voice, 3, 113-119
- **Deal**, R. & **Emanuel**, F. (1978): Some waveform and spectral features of vowel roughness. in: Journal of Speech and Hearing Research, 21, 250-264
- **Endres**, W., **Bambach**, W. & **Flösser**, G. (1971): *Voice spectrograms as a function of age, voice disguise, and voice imitation.* Journal of the Acoustical Society of America, 49, 1842-1847
- Goldstein, E. Bruce (1997): Wahrnehmungspsychologie. Eine Einführung. Spektrum, Heidelberg
- **Hajime**, H. (1997): *Investigating the Physiology of Laryngeal Structures*. in: The Handbook of Phonetic Sciences [Hrsg.: Hardcastle W. J. & Laver J.], 116-136; Blackwell Publishers, Oxford
- **Hartman**, D. E. (1979): *The perceptual identity and characteristics of aging in normal male adult speakers*. in: Journal of Communication Disorders, 12, 53-61
- **Hartman**, D. E. & **Danhauer**, J. L. (1976): Perceptual features of speech for males in four perceived age decades. in: Journal of the Acoustical Society of America, 59, 713-715
- Hoit, J., Hixon, K., Altman, M. & Morgan, W. (1989): *Speech breathing in women*. in: Journal of Speech and Hearing Research, 32, 353-365
- **Hollien**, H. & **Tolhurst**, G. (1978): *The aging voice*. in: Transcripts of the Seventh Symposium Care of the Professional Voice [Hrsg. Weinberg, B]; The Voice Foundation, New York, S. 67-73
- **Huntley**, R, **Hollien**, H. & **Shipp**, T. (1987): *Influences of listener characteristics on perceived age estimations*. in: Journal of Voice, 1, 49-52
- **Jacques**, Richard D. & **Rastatter**, Michael P. (1990): Recognition of speaker age from selected acoustic features as perceived by normal young and older listeners. Folia Phoniatrica, 42, 118-124
- **KAY Elemetrics Corp.** (1993): Multi-Dimensional Voice Program, Model 4305, Operations Manual.
- **Kergil**, D. (1986): *Communication Issues Associated with Aging*. (http://otpt.ups.edu/Gerontological Resources/Gerontology Manual/Kergil-D.html)
- **Kienast**, Miriam (1998): Segmentelle Reduktion bei emotionaler Sprechweise. Magisterarbeit im Fachgebiet Kommunikationswissenschaft der TU Berlin
- **Liberman**, P. (1963): Some acoustic measures of the fundamental periodicity of normal and pathologic larynges. in: Journal of the Acoustical Society of America, 35, 344-353
- **Linville**, Sue Ellen (2000): *The aging voice*. in: Voice Quality Measurement [Hrsg.: Kent, Raymond D. und Ball, Martin J.]; Singular Thomson Learning, San Diego
- Linville, Sue Ellen (2001): Vocal Aging. Singular Thomson Learning, San Diego

- **Linville**, Sue Ellen & **Fisher**, H. (1985): Acoustic characteristics of perceived versus actual vocal age in controlled phonation by adult females. in: Journal of the Acoustical Society of America, 78, 40-48
- **Linville**, S. E. & **Korabic**, E. (1986): *Elderly listeners' estimates of vocal age in adult females*. in: Journal of the Acoustical Society of America, 80, 692-694
- **Linville**, Sue Ellen & **Rens**, J. (2001): *Vocal tract resonance analysis of aging voice using long-term average spectra*. in: Journal of Voice, 15
- **Liss**, J., **Weismer**, G. & **Rosenbeck**, J. (1990): Selected acoustic characteristics of speech production in very old males. in: Journal of Gerontology: Psychological Sciences, 45, P35-P45
- Morris, R. & Brown, W. (1987): Age-related voice measures among adult women. Journal of Voice, 1, 38-43
- **Morris**, R. & **Brown**, W. (1994): *Age-related differences in speech intensity among adult females*. Folia Phoniatrica et Logopaedica, 46, 64-69
- **Mueller**, P. B. & **Xue**, A. (1996): *Variability of fundamental frequency measures*. Logopedics Phoniatrics & Vocology, 21, 64-67 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/fopaper.pdf)
- **Mueller** P. B. & **Xue**, A. (1996): Effects of physical activity levels on perceived age and speaking rate of elderly subjects: preliminary data. NSSLHA Journal, 23, 63-67 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/agrejudg.pdf)
- **Neiman**, G. & **Applegate**, J. (1990): Accuracy of listener judgments of perceived age relative to chronological age in adults . in: Folia Phoniatrica (Basel), 42, 327-330
- **Orlikoff**, R. (1990): The relationship of age and cardiovascular health to certain acoustic characteristics of male voices. in: Journal of Speech and Hearing Research, 33, 450-457
- **Orlikoff**, R. & **Baken**, R. (1990): Consideration of the relationship between the fundamental frequency of phonation and vocal jitter. in: Folia Phoniatrica (Basel), 42, 31-40
- **Orlikoff**, R. & **Kahane**, J. (1991): *Influence of mean sound pressure level on jitter and shimmer measures*. in: Journal of Voice, 5, 113-119
- **O'Shaughnessy**, Douglas (2000): *Speech Communications. Human and Machine.* IEEE Press, Piscataway
- Oyer, E. & Deal, L. (1985): Temporal aspects of speech and the aging process. in: Folia Phoniatrica (Basel), 37, 109-112
- Ptacek, P., Sander, E., Maloney, W. & Jackson, C. (1966): Phonatory and related changes with advanced age. in: Journal of Speech and Hearing Research, 9, 353-360
- **Ptacek**, P., **Sander**, E. (1966): *Age recognition from voice*. in: Journal of Speech and Hearing Research, 9, 273-277
- **Ramig**, L. (1983): Effects of physiological aging on vowel spectral noise. in: Journal of Gerontology, 38, 223-225
- **Ramig**, L. (1983): *Effects of physiological aging on speaking and reading rate.* in: Journal of Communication Disorders, 16, 217-226
- **Ramig**, L. & **Ringel**, R. (1983): *Effects of physiological aging on selected acoustic characteristics of voice*. in: Journal of Speech and Hearing Research, 26, 22-30
- Ramig, L. (1986): Aging speech: Physiological and sociological aspects. in: Language and Communication, 6, 25-34
- **Rastatter**, M. & **Jacques**, R. (1990): Formant frequency structure of the aging male and female vocal tract. in: Folia Phoniatrica (Basel), 42, 312-319
- Ryan, W. (1972): Acoustic aspects of the aging voice. in: Journal of Gerontology, 27, 265-268
- Ryan, W. & Burk, K. (1974): Perceptual and acoustic correlates in the speech of males. in: Journal of Communication Disorders, 7, 181-192
- Sapienza, C. M. & Dutka, J. (1996): Glottal airflow characteristics of women's voice production along an aging continuum. in: Journal of speech and hearing research, 39, 322-328
- **Schötz**, Susanne (2001): *A perceptual study of speaker age.* in: Working Papers from the Department of Linguistics and Phonetics at Lund University, 49, 136-139 (http://www.ling.lu.se/conference/fonetik2001/proceedings/bidrag35.pdf)
- **Schroots**, J.F., **Birren**, J.E. (1988): *The nature of time: implications for research on aging.* in: Compr. Gerontol C, 2, 1-29

- **Shipp**, T., **Qi**, Y., **Huntley**, R. & **Hollien**, H. (1992): Acoustic and temporal correlates of perceived age. in: Journal of Voice, 6, 211-216
- Smith, B., Wasowicz, J. & Preston, J. (1987): Temporal characteristics of the speech of normal elderly adults. in: Journal of Speech and Hearing Research, 30, 522-529
- **Uffink**, J. (2000): *Time and Ageing: a physicist's look at gerontology*. http://www.phys.uu.nl/~wwwgrnsl/jos/publications/aging.htm
- **Wagner**, I. (1995): A new jitter-algorithm to quantify hoarseness: an exploratory study. in: Forensic Linguistics, 2, 18-27
- **Wagner**, I. (1995): *Jitter-measurements from telephone-transmitted speech.*
- **Weise**, Silvia (1999): *Perzeptive und akustische Analysen von jungen und alten Stimmen*. Magisterarbeit im Fachgebiet Kommunikationswissenschaft der TU Berlin
- Xue, Steve An & Deliyski, Dimitar (2001): Effects of Aging on Selected Acoustic Voice Parameters: Preliminary Normative Data and Educational Implications. Educational Gerontology, 27, 159-168. (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/mdvpoyedge.PDF)
- **Xue**, A., **Neeley** R., **Hagstrom**, F. & **Hao**, G. (2001): *Speaking F0 characteristics of Euro-American and African American elderly speakers: building a clinical comparative platform.* Journal of Clinical Linguistics & Phonetics, 13, 245-252 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/Hagstrom2.PDF)
- **Xue**, A. & **Fucci**, D. (2000): Effects of race and gender on acoustic features of voice analysis. Perceptual and Motor Skills, 91, 951-958 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/mdvp.jpms.PDF)
- Xue, A., Jiang, J., Lin, E., Glassenberg, R. & Mueller, P. B. (1999): Age-related changes in human vocal tract configurations and the effects on the speakers' formant frequencies: a pilot study. Logopedics Phoniatrics & Vocology, 24 (3), 132-137. (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/pilotrev.PDF)
- **Xue**, A., & **Mueller**, P. B. (1997): An acoustic study of selected voice parameters of sedentary and active elderly speakers. Logopedics Phoniatrics & Vocology, 22, 51-60 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/article.pdf)
- **Xue**, A., & **Mueller**, P. B. (1997): *The Effect of physical activity on the oral reading rate of elderly speakers*. Hearsay, 11 (2), 35-39 (http://oak.cats.ohiou.edu/~xue/html-src/pdf-file/oralread.pdf)

12 Tabellen

12.1 Übereinstimmung der Altersschätzungen

12.1.1 Kennwerte der Altersschätzungen pro Beispiel

Dateiname	über alle Hörer gemittelte Altersschätzung	Standard- abweichung des geschätzten Alters	Varianz des geschätzten Alters	Varianz d. ges. Alters in der Hörerpopulation
01aa,wav	30,64	9,09	82,56	88,45
01as,wav	29,07	6,11	37,35	40,02
01b2(x),	40,20	9,75	95,03	101,82
01ia,wav	38,50	11,69	136,73	146,50
01is,wav	36,57	13,01	169,19	181,27
01t,wav	39,80	6,95	48,31	51,77
01ua,wav	38,20	9,74	94,89	101,66
01us,wav	33,27	7,60	57,78	61,91
02aa,wav	44,13	10,56	111,41	119,37
02as,wav	45,87	11,18	124,98	133,91
02b,wav	45,67	9,48	89,95	96,38
02ia,wav	45,69	9,38	88,06	94,35
02is,wav	44,27	11,84	140,21	150,23
02t,wav	50,67	5,47	29,95	32,09
02ua,wav	50,93	9,48	89,78	96,19
02us,wav	45,87	9,40	88,41	94,73
03aa,wav	43,08	9,12	83,24	89,19
03as,wav	44,80	10,06	101,17	108,40
03b,wav	32,27	3,13	9,78	10,48
03ia,wav	47,13	11,19	125,27	134,21
03is,wav	48,40	7,59	57,54	61,65
03t,wav	37,13	5,30	28,12	30,13
03ua,wav	46,69	11,48	131,90	141,32
03us,wav	45,33	9,79	95,81	102,65
04aa,wav	32,47	12,80	163,84	175,54
04as,wav	36,20	13,22	174,89	187,38
04b1,wav	30,73	7,29	53,21	57,01
04ia,wav	35,64	11,99	143,79	154,06
04is,wav	34,31	8,20	67,23	72,03
04t,wav	33,87	10,03	100,55	107,73
04ua,wav	35,53	8,49	72,12	77,28
04us,wav	38,07	10,22	104,53	112,00
05aa,wav	44,64	15,36	235,94	252,79
05as,wav	45,23	16,55	274,03	293,60
05b,wav	47,33	8,28	68,52	73,42
05ia,wav	31,53	7,41	54,98	58,91
05is,wav	38,73	11,05	122,07	130,79
05t,wav	47,27	5,24	27,50	29,46
05ua,wav	34,77	8,64	74,69	80,03
05us,wav	34,50	8,86	78,58	84,19
06aa,wav	52,71	11,77	138,53	148,42
06as,wav	51,71	13,02	169,60	181,72
06b,wav	49,00	4,69	22,00	23,57
06ia,wav	52,14	9,75	95,06	101,84
06is,wav	48,77	6,81	46,36	49,67
06t-02dB	47,73	9,32	86,78	92,98
06ua,wav	41,21	9,71	94,34	101,07

00	14.00	7.00	60.07	00.50
06us,wav	44,29	7,88	62,07	66,50
07aa,wav	45,80	15,00	225,03	241,10
07as,wav	33,71	11,47	131,45	140,84
07b,wav	47,20	8,18	66,89	71,66
07ia,wav	55,21	11,21	125,72	134,70
07is,wav	45,87	11,73	137,70	147,53
07t,wav	41,87	8,49	72,12	77,28
07ua,wav	39,15	10,10	101,97	109,26
07us,wav	39,31	11,27	127,06	136,14
08aa,wav	37,93	12,06	145,46	155,85
08as,wav	55,27	16,89	285,21	305,58
08b,wav	44,73	6,36	40,49	43,39
08ia,wav	34,00	6,78	46,00	49,29
08is,wav	42,33	13,57	184,24	197,40
08t,wav	47,93	10,15	102,92	110,28
08ua,wav	38,23	11,12	123,69	132,53
08us,wav	51,40	10,15	103,11	110,48
09aa,wav	45,93	10,68	114,07	122,21
09as,wav	38,27	9,00	80,92	86,70
09b,wav	47,00	5,82	33,86	36,28
09ia,wav	42,93	12,32	151,78	162,62
09is,wav	43,53	11,78	138,84	148,75
09t,wav	52,64	6,44	41,48	44,44
09ua,wav	37,00	9,32	86,77	92,97
09us,wav	43,47	8,47	71,69	76,82
	•			
10aa,wav	39,62	11,79	139,09	149,03
10as,wav	40,73	9,77	95,50	102,32
10b,wav	42,53	5,08	25,84	27,68
10ia,wav	51,31	12,04	144,90	155,25
10is,wav	47,87	8,81	77,55	83,09
10t,wav	45,20	5,45	29,74	31,87
10ua,wav	42,13	8,18	66,98	71,77
10us,wav	39,47	8,33	69,41	74,37
11aa,wav	27,87	6,47	41,84	44,83
11as,wav	34,21	9,21	84,80	90,85
11b,wav	40,86	6,38	40,75	43,66
11ia,wav	33,07	11,65	135,61	145,30
11is,wav	27,00	5,79	33,54	35,93
11t,wav	40,64	9,71	94,25	100,98
11ua,wav	30,93	8,08	65,21	69,87
11us,wav	31,15	8,91	79,31	84,97
12aa,wav	23,53	5,54	30,70	32,89
12as,wav	25,50	5,63	31,65	33,92
12b,wav	23,53	4,14	17,12	18,35
12ia,wav	23,87	5,00	24,98	26,77
12is,wav	26,80	8,93	79,74	85,44
12t,wav	21,53	3,50	12,27	13,14
12ua,wav	35,73	11,91	141,78	151,91
12us,wav	29,07	4,53	20,50	21,96
13aa,wav	47,80	11,97	143,17	153,40
13as,wav	49,00	13,12	172,14	184,44
13b,wav	52,50	6,24	38,89	41,66
13ia,wav	54,80	8,65	74,89	80,24
13is,wav	50,50	11,98	143,50	153,75
13t,wav	48,07	8,27	68,38	73,26
13ua,wav	45,00	11,90	141,50	151,61
13us,wav	37,23	6,37	40,53	43,42
14aa,wav	40,43	7,75	60,11	64,40
uu, ** u v	10,10	1 . ,	, 55, 1	J 1, 10

4455	20.07	7.40	55.04	FO 40
14as,wav	32,67	7,43	55,24	59,18
14b,wav	37,47	6,36	40,41	43,30
14ia,wav	35,47	10,74	115,41	123,65
14is,wav	33,53	5,95	35,41	37,94
14t,wav	41,73	5,82	33,92	36,35
14ua,wav	40,25	9,48	89,84	96,26
14us,wav	41,87	10,18	103,70	111,10
15aa,wav	46,27	15,98	255,35	273,59
15as,wav	34,07	11,19	125,15	134,09
15b,wav	42,93	8,36	69,92	74,92
15ia,wav	41,60	9,86	97,26	104,20
15is,wav	37,67	10,43	108,81	116,58
15t,wav	46,53	9,04	81,69	87,53
15ua,wav	38,73	10,63	113,07	121,14
15us,wav	30,85	6,87	47,14	50,51
16aa,wav	36,47	15,78	248,98	266,77
16as,wav	30,87	8,51	72,41	77,58
16b,wav	41,80	7,83	61,31	65,69
16ia,wav	32,20	9,94	98,89	105,95
16is,wav	34,50	8,84	78,11	83,69
16t,wav	38,80	7,21	52,03	55,75
16ua,wav	37,85	10,15	102,97	110,33
16ua,wav	38,93	9,41	88,64	94,97
17aa,wav	45,23	17,46	304,86	326,63
17aa,wav 17as,wav	40,46	13,67	186,94	200,29
			·	
17b,wav	45,00	5,24	27,43	29,39
17ia,wav	40,07	12,47	155,61	166,73
17is,wav	36,07	8,24	67,92	72,78
17t,wav	49,67	7,31	53,38	57,19
17ua,wav	49,07	12,14	147,46	157,99
17us,wav	37,71	9,10	82,84	88,75
18aa,wav	30,71	13,12	172,07	184,36
18as,wav	28,93	11,58	134,07	143,64
18b,wav	27,27	5,90	34,78	37,27
18ia,wav	30,07	12,22	149,30	159,97
18is,wav	35,33	11,33	128,38	137,55
18t,wav	27,27	3,79	14,35	15,38
18ua,wav	29,14	10,15	103,06	110,42
18us,wav	31,53	9,20	84,70	90,74
19aa,wav	34,57	15,54	241,50	258,74
19as,wav	30,07	10,62	112,69	120,74
19b,wav	47,79	8,14	66,33	71,07
19ia,wav	41,33	11,96	143,15	153,38
19is,wav	39,87	9,58	91,84	98,40
19t,wav	40,64	6,42	41,17	44,11
19ua,wav	37,08	12,46	155,24	166,33
19us,wav	34,53	8,05	64,84	69,47
20aa,wav	31,71	8,97	80,37	86,12
20as,wav	35,71	7,13	50,84	54,47
20b,wav	36,80	6,33	40,03	42,89
20ia,wav	33,43	7,29	53,19	56,99
20is,wav	34,62	7,93	62,92	67,42
20t,wav	35,60	5,60	31,40	33,64
20ua,wav	35,75	7,19	51,66	55,35
20us,wav	36,69	8,20	67,23	72,03
21aa,wav	39,93	13,25	175,64	188,18
21as,wav	43,87	9,33	87,12	93,35
21b-02dB	38,40	7,39	54,69	58,59
0200	1 30, 10	. ,00	1 3 1,00	30,00

21io wov	50.47	12.24	140.04	160.54
21ia,wav	52,47	12,24	149,84	160,54
21is,wav	42,50	11,87	140,89	150,95
21t-02,wav	39,20	5,92	35,03	37,53
21ua,wav	42,00	8,80	77,46	82,99
21us,wav	48,47	8,17	66,69	71,46
22aa,wav	35,40	11,44	130,83	140,17
22as,wav	38,07	10,98	120,53	129,14
22b-02dB	53,60	6,76	45,69	48,95
22ia,wav	41,20	7,16	51,31	54,98
22is,wav	41,08	8,26	68,24	73,12
22t-02dB	49,20	8,67	75,17	80,54
22ua,wav	31,46	8,87	78,60	84,22
22us,wav	38,27	9,14	83,50	89,46
23aa,wav	43,21	14,47	209,41	224,37
23as,wav	31,64	7,29	53,17	56,97
23b,wav	50,93	4,17	17,35	18,59
23ia,wav	37,60	6,06	36,69	39,31
23is,wav	42,07	9,86	97,21	104,15
23t,wav	48,07	6,89	47,50	50,89
23ua,wav	42,23	10,04	100,86	108,06
23us,wav	44,31	10,54	111,06	119,00
24aa,wav	28,14	6,70	44,90	48,11
24as,wav	33,14	9,70	94,13	100,86
24b,wav	31,60	6,20	38,40	41,14
24ia,wav	36,73	8,30	68,92	73,85
24is,wav	33,33	6,90	47,67	51,07
24t,wav	32,13	3,52	12,41	13,30
24ua,wav	33,40	6,91	47,69	51,09
24us,wav	40,47	10,80	116,55	124,88
25aa,wav	48,69	11,06	122,23	130,96
25as,wav	44,38	10,59	112,09	120,10
25b,wav	55,73	7,68	58,92	63,13
25ia,wav	52,73	10,60	112,35	120,38
25is,wav	47,87	11,29	127,55	136,66
25t,wav	52,13	8,39	70,41	75,44
25ua,wav	48,46	14,60	213,10	228,32
25us,wav	40,62	9,79	95,92	102,77
26aa,wav	45,14	9,70	94,13	100,86
26as,wav	47,36	10,19	103,79	111,20
26b,wav	43,50	6,88	47,35	50,73
26ia,wav	43,64	12,19	148,71	159,33
26is,wav	44,00	11,09	123,00	131,79
26t,wav	47,14	7,32	53,52	57,34
26ua,wav	41,54	12,33	152,10	162,97
26us,wav	44,40	7,51	56,40	60,43
27aa,wav	41,60	12,16	147,83	158,39
27as,wav	39,21	7,54	56,80	60,85
27b,wav	42,87	8,58	73,55	78,81
27ia,wav	40,87	9,16	83,84	89,83
27is,wav	34,23	4,85	23,53	25,21
27t,wav	48,73	7,60	57,78	61,91
27ua,wav	47,40	9,98	99,54	106,65
27us,wav	35,36	8,35	69,79	74,77
28aa,wav	42,85	15,05	226,64	242,83
28as,wav	46,40	11,94	142,54	152,72
28b,wav	40,47	7,21	51,98	55,69
28ia,wav			400.00	4.4.4.0
zoia, wav	39,80	11,49	132,03	141,46

004	20.07	0.00	40.07	FO 44
28t,wav	39,67	6,98	48,67	52,14
28ua,wav	39,67	11,61	134,81	144,44
28us,wav	37,21	9,63	92,64	99,26
29aa,wav	36,85	12,86	165,47	177,29
29as,wav	44,93	13,26	175,92	188,48
29b,wav	48,07	8,49	72,07	77,21
29ia,wav	39,38	12,70	161,26	172,77
29is,wav	36,53	12,83	164,55	176,31
29t,wav	57,67	7,52	56,52	60,56
29ua,wav	36,21	9,51	90,49	96,95
29us,wav	38,13	7,08	50,12	53,70
30aa,wav	38,53	10,40	108,12	115,85
30as,wav	43,07	15,16	229,78	246,19
30b,wav	34,20	6,19	38,31	41,05
30ia,wav	37,27	10,36	107,35	115,02
30is,wav	38,92	11,15	124,41	133,30
30t,wav	36,33	8,75	76,52	81,99
30ua,wav	40,40	10,46	109,40	117,21
30us,wav	42,47	11,80	139,12	149,06
31aa,wav	40,67	11,27	127,10	136,17
31aa,wav	38,13	10,73	115,12	123,35
·		8,01		
31b,wav 31ia,wav	54,60 44,14	12,60	64,11 158,75	68,69 170,09
31is,wav	37,23	11,75	138,03	147,89
31t,wav	53,87	6,76	45,70	48,96
31ua,wav	45,87	7,80	60,84	65,18
31us,wav	45,57	10,45	109,19	116,99
32aa,wav	37,71	8,42	70,83	75,89
32as,wav	39,33	10,49	110,10	117,96
32b,wav	41,36	8,97	80,40	86,14
32ia,wav	42,47	9,99	99,84	106,97
32is,wav	37,27	5,24	27,50	29,46
32t,wav	39,71	5,08	25,76	27,60
32ua,wav	48,47	9,04	81,69	87,53
32us,wav	35,69	7,93	62,90	67,39
33aa,wav	47,46	12,53	156,94	168,15
33as,wav	44,00	12,88	166,00	177,86
33b,wav	44,14	10,13	102,59	109,92
33ia,wav	38,92	11,74	137,91	147,76
33is,wav	42,00	11,60	134,54	144,16
33t,wav	46,13	9,11	82,98	88,91
33ua,wav	51,27	8,29	68,78	73,69
33us,wav	44,38	9,67	93,42	100,10
34aa,wav	56,87	10,04	100,84	108,04
34as,wav	49,57	12,90	166,42	178,31
34b,wav	56,57	7,48	55,96	59,95
34ia,wav	47,67	15,19	230,81	247,30
34is,wav	46,50	12,01	144,28	154,58
34t,wav	53,67	6,72	45,10	48,32
34úa,wav	47,60	8,74	76,40	81,86
34us,wav	42,13	10,93	119,41	127,94
35aa,wav	28,23	14,06	197,69	211,81
35as,wav	33,07	13,88	192,78	206,55
35b,wav	29,47	13,46	181,12	194,06
35ia,wav	28,67	10,17	103,38	110,77
35is,wav	26,93	6,68	44,64	47,83
35t,wav	28,00	4,29	18,43	19,75
35ua,wav	29,00	10,71	114,77	122,97
Joua, wav	20,00	10,11	1 17,11	122,01

25uc way	30.03	10.69	114 09	122.22
35us,wav	30,92	10,68	114,08	122,23
36aa,wav	30,23	9,60	92,19	98,78
36as,wav	35,47	9,85	96,98	103,91
36b,wav	29,21	5,24	27,41	29,37
36ia,wav	27,85	6,14	37,64	40,33
36is,wav	34,40	10,77	115,97	124,25
36t,wav	28,00	4,76	22,62	24,23
36ua,wav	39,00	7,61	57,86	61,99
36us,wav	38,60	13,23	175,11	187,62
37aa,wav	34,57	10,00	99,96	107,10
37as,wav	33,43	12,52	156,73	167,92
37b-02dB	30,86	7,26	52,75	56,51
37ia,wav	34,13	10,26	105,27	112,79
37is,wav	35,36	8,82	77,79	83,34
37t(wegsg	36,29	9,12	83,14	89,08
ku				
37ua,wav	31,77	8,25	68,03	72,89
37us,wav	31,53	7,95	63,27	67,79
38aa,wav	37,50	10,65	113,35	121,44
38as,wav	40,73	10,24	104,92	112,42
38b,wav	35,71	8,05	64,83	69,47
38ia,wav	34,80	8,13	66,17	70,90
38is,wav	40,33	9,15	83,67	89,64
38t,wav	40,67	7,15	51,10	54,74
38ua,wav	43,60	9,92	98,40	105,43
38us,wav	43,93	11,58	134,21	143,80
39aa,wav	59,67	14,33	205,24	219,90
39as,wav	56,20	13,42	180,03	192,89
39b,wav	64,79	11,96	142,95	153,16
39ia,wav	43,71	10,99	120,84	129,47
39is,wav	43,33	10,13	102,52	109,85
39twgmak	69,50	7,77	60,42	64,74
39ua,wav	40,23	13,19	174,03	186,46
39us,wav	42,80	8,94	79,89	85,59
40aa,wav	42,07	9,35	87,50	93,74
40as,wav	43,67	13,52	182,81	195,87
40b,wav	35,14	9,45	89,21	95,58
40ia,wav	44,60	9,36	87,69	93,95
40is,wav	46,50	8,27	68,42	73,31
40t,wav	36,50	6,85	46,89	50,23
40ua,wav	44,60	8,63	74,40	79,71
40us,wav	42,40	9,66	93,26	99,92
41aa,wav	31,46	10,25	105,10	112,61
41as,wav	35,00	9,74	94,83	101,61
41b,wav	51,00	8,73	76,14	81,58
41ia,wav	40,29	10,69	114,22	122,38
41is,wav	35,33	6,03	36,38	38,98
41t,wav	44,13	9,44	89,12	95,49
41ua,wav	37,50	11,13	123,96	132,82
41us,wav	35,27	9,91	98,21	105,23
42aa,wav	26,40	3,89	15,11	16,19
42as,wav	30,80	9,18	84,31	90,34
42b,wav	54,33	8,52	72,67	77,86
42ia,wav	43,33	15,64	244,52	261,99
42is,wav	39,23	11,28	127,19	136,28
42t,wav	47,73	7,11	50,50	54,10
42ua,wav	46,80	11,88	141,03	151,10
42us,wav	41,53	13,54	183,27	196,36

40	40.04	40.00	070.00	005.04
43aa,wav	46,64	16,62	276,09	295,81
43as,wav	34,36	10,06	101,17	108,40
43b,wav	50,27	11,16	124,64	133,54
43ia,wav	45,83	12,68	160,70	172,18
43is,wav	38,00	10,60	112,43	120,46
43t,wav	57,33	9,04	81,67	87,50
43ua,wav	44,31	10,26	105,23	112,75
43us,wav	33,67	5,39	29,10	31,17
44aa,wav	38,07	15,71	246,69	264,31
44as,wav	40,87	14,74	217,27	232,79
44b,wav	51,73	9,68	93,78	100,48
44ia,wav	53,27	10,56	111,50	119,46
44is,wav	51,47	9,55	91,27	97,79
44t,wav	53,73	8,56	73,21333	78,44
44ua,wav	45,53	11,46	131,41	140,80
44us,wav	43,80	10,03	100,60	107,79
45aa,wav	40,87	14,78	218,41	234,01
45as,wav	37,93	10,86	117,92	126,34
45b,wav	50,40	6,39	40,83	43,75
45ia,wav	39,86	12,45	154,90	165,97
45is,wav	40,53	10,66	113,55	121,66
4515,wav 45t,wav	54,40	5,84	34,11	36,55
45i,wav 45ua,wav	42,47	13,88	192,55	206,31
	•			
45us,wav	39,93	10,34	106,84	114,47
46aa,wav	39,40	8,23	67,69	72,52
46as,wav	38,07	10,08	101,64	108,90
46b,wav	47,21	9,80	96,03	102,89
46ia,wav	52,60	8,05	64,83	69,46
46is,wav	48,92	9,15	83,74	89,73
46t,wav	48,20	6,65	44,17	47,33
46ua,wav	43,31	11,81	139,40	149,35
46us,wav	49,40	8,90	79,26	84,92
47aa,wav	44,07	9,18	84,35	90,38
47as,wav	31,13	7,99	63,84	68,40
47b-02dB	56,73	6,67	44,50	47,67
47ia,wav	49,33	9,66	93,38	100,05
47is,wav	41,15	12,69	161,14	172,65
47t-02dB	57,73	6,25	39,07	41,86
47ua,wav	51,87	11,37	129,27	138,50
47us,wav	57,00	11,15	124,29	133,16
48aa,wav	44,80	14,73	217,03	232,53
48as,wav	46,47	11,12	123,70	132,53
48b,wav	57,67	7,49	56,10	60,10
48ia,wav	48,53	13,23	175,12	187,63
48is,wav	45,67	10,23	104,67	112,14
48t,wav	58,73	7,12	50,64	54,26
48ua,wav	51,73	11,39	129,64	138,90
48us,wav	38,13	11,77	138,55	148,45
49aa,wav	36,43	12,70	161,19	172,70
49as,wav	45,13	10,82	116,98	125,34
49b,wav	57,80	7,99	63,89	68,45
49ia,wav	54,00	12,67	160,50	171,96
49is,wav	54,13	7,85	61,70	66,10
49t,wav	58,40	6,62	43,83	46,96
49ua,wav	40,57	11,06	122,26	131,00
49us,wav	35,87	10,43	108,84	116,61
50aa,wav	48,00	13,24	175,29	187,81
50as,wav	36,85	13,02	169,64	181,76
J545, 1744	1 30,00	10,02	100,0-	,

50b,wav	47,40	7,54	56,83	60,89
50ia,wav	45,73	12,09	146,07	156,50
50is,wav	38,29	9,71	94,37	101,12
50t,wav	51,20	7,47	55,74	59,72
50ua,wav	40,07	9,90	98,07	105,08
50us,wav	43,21	9,33	87,10	93,33
51aa,wav	44,07	9,13	83,30	89,25
51as,wav	40,14	9,29	86,29	92,45
51b,wav	44,60	7,08	50,11	53,69
51ia,wav	48,13	11,65	135,84	145,54
51is,wav	48,87	9,01	81,12	86,92
51t,wav	46,73	6,84	46,78	50,12
51ua,wav	47,13	11,00	120,98	129,62
51us,wav	46,27	9,62	92,64	99,26
52aa,wav	25,73	6,63	43,92	47,06
52as,wav	29,73	11,13	123,78	132,62
52b,wav	27,54	6,92	47,94	51,36
52ia,wav	32,13	7,54	56,84	60,90
52is,wav	32,57	7,46	55,65	59,62
52t,wav	25,83	7,93	62,88	67,37
52ua,wav	31,64	7,90	62,40	66,86
52us,wav	33,93	7,35	54,07	57,93
53aa,wav	58,53	9,35	87,41	93,65
53as,wav	55,53	8,61	74,12	79,42
53b,wav	67,57	11,18	125,03	133,96
53ia,wav	59,13	8,40	70,55	75,59
53is,wav	52,54	12,76	162,94	174,57
53twgomk	72,71	5,41	29,30	31,39
53ua,wav	49,13	15,53	241,27	258,50
53us,wav	45,69	8,05	64,73	69,35
54aa,wav	39,40	17,10	292,26	313,13
54as,wav	33,23	11,23	126,03	135,03
54b,wav	27,33	10,83	117,33	125,71
54ia,wav	36,27	11,32	128,21	137,37
54is,wav 54t,wav	33,29 24,42	9,95 3,48	98,99 12,08	106,06 12,95
54ua,wav	33,21	11,03	121,72	130,41
54us,wav	40,00	9,43	88,92	95,27
55aa,wav	39,29	9,85	96,99	103,92
55as,wav	44,43	11,28	127,34	136,44
55b,wav	33,67	4,94	24,42	26,17
55ia,wav	40,13	9,27	85,98	92,12
55is,wav	37,73	10,33	106,64	114,26
55t,wav	32,77	4,32	18,69	20,03
55ua,wav	36,27	6,16	37,92	40,63
55us,wav	40,27	8,94	79,92	85,63
56aa,wav	25,80	5,99	35,89	38,45
56as,wav	31,60	7,30	53,26	57,06
56b,wav	28,17	10,38	107,79	115,49
56ia,wav	28,29	8,85	78,37	83,97
56is,wav	31,87	10,10	101,98	109,27
56t2,wav	24,00	3,79	14,36	15,39
56ua,wav	43,43	10,56	111,50	119,46
56us,wav	40,86	11,57	133,98	143,55
Mittel	41,1732	9,5659	98,5229	105,5602

12.1.2 Kennwerte der Schätzungen für die einzelnen Sprecherinnen

Spred	herin	chrono-	Mittelwerte		ges. Popula	tionsvarianzen
Nr.	Kür-	logisches	nur Text	aller Bedin-	nur Text	aller Bedin-
	zel	Alter		gungen		gungen
1	AOA	47	39,8000	35,7813	51,77	96,67
2	GM	52	50,6700	46,6375	32,09	102,16
3	НН	42	37,1300	43,1038	30,13	84,75
4	MR	35	33,8700	34,6025	107,73	117,88
5	ВВ	53	47,2700	40,5000	29,46	125,40
6	HK	59	47,7300	48,4450	92,98	95,72
7	GΖ	49	41,8700	43,5150	77,28	132,31
8	BR	58	47,9300	43,9775	110,28	138,10
9	UΖ	55	52,6400	43,8463	44,44	96,35
10	HG	61	45,2000	43,6075	31,87	86,92
11	RB	58	40,6400	33,2162	100,98	77,05
12	AR	20	21,5300	26,1950	13,14	48,05
13	GF	57	48,0700	48,1125	73,26	110,22
14	PS	40	41,7300	37,9275	36,35	71,52
15	KD	51	46,5300	39,8313	87,53	120,32
16	CD	38	38,8000	36,4275	55,75	107,59
17	GB	54	49,6700	42,9100	57,19	137,47
18	? A	22	27,2700	30,0313	15,38	109,92
19	МН	55	40,6400	38,2350	44,11	122,78
20	RO	44	35,6000	35,0388	33,64	58,61
21	ER	60	39,2000	43,3550	37,53	105,45
22	ЕC	52	49,2000	41,0350	80,54	87,57
23	GS	51	48,0700	42,5075	50,89	90,17
24	В?	25	32,1300	33,6175	13,30	63,04
25	D G-L	55	52,1300	48,8262	75,44	122,22
26	ΑT	47	47,1400	44,5900	57,34	104,33
27	BK	59	48,7300	41,2838	61,91	82,05
28	СН	53	39,6700	41,5625	52,14	132,49
29	MS	51	57,6700	42,2213	60,56	125,41
30	A-C A	43	36,3300	38,8987	81,99	124,96
31	T K-W	61	53,8700	45,0100	48,96	109,66
32	РJ	45	39,7100	40,2512	27,60	74,87
33	МВ	40	46,1300	44,7875	88,91	126,32
34	FK	61	53,6700	50,0725	48,32	125,79
35	A D	27	28,0000	29,2863	19,75	129,49
36	JG	20	28,0000	32,8450	24,23	83,81
37	G B-G	39	36,2900	33,4925	89,08	94,68
38	L?	27	40,6700	39,6587	54,74	95,98
39	ΕB	67	69,5000	52,5288	64,74	142,76
40	UE	26	36,5000	41,9350	50,23	97,79
41	HR	58	44,1300	38,7475	95,49	98,84
42	??	63	47,7300	41,2688	54,10	123,03
43	??	64	57,3300	43,8012	87,50	132,73
44	??	65	53,7300	47,3087	78,44	142,73
45	??	60	54,4000	43,2988	36,55	131,13
46	??	76	48,2000	45,8888	47,33	90,64
47	??	66	57,7300	48,6263	41,86	99,08
48	??	65	58,7300	48,9663	54,26	133,32
49	??	80	58,4000	47,7913	46,96	112,39
50	??	76	51,2000	43,8438	59,72	118,27
51	??	61	46,7300	45,7425	50,12	93,36
52	SH	24	25,8300	29,8875	67,37	67,97

53	FF	87	72,7100	57,6038	31,39	114,56
54	GvT	27	24,4200	33,3938	12,95	131,99
55	ΡВ	30	32,7700	38,0700	20,03	77,40
56	SS	26	24,0000	31,7525	15,39	85,33
Insge	samt	49,77	44,2007	41,1732	53,8035	105,5602

12.1.3 Kennwerte der Schätzungen für die Sprechbedingungsgruppen

Art des Bei- spiels		über alle Hörer gemittelte Alters-	Standard- abweichung des geschätzten	Varianz des geschätzten Alters	Varianz d. ges. Alters in der Hörerpopu-
		schätzung	Alters		lation
aa	N	56	56	56	56
	Mittelwert	39,7468	11,4559	141,1008	151,1795
	Standard- abweichung	8,1570	3,1712	72,4485	77,6234
	Varianz	66,537	10,056	5248,780	6025,386
as	N	56	56	56	56
	Mittelwert	39,2730	10,8611	123,7658	132,6062
	Standard- abweichung	7,2776	2,4305	54,6065	58,5070
	Varianz	52,964	5,907	2981,870	3423,065
ia	N	56	56	56	56
	Mittelwert	41,5266	10,4129	113,2621	121,3523
	Standard- abweichung	8,0660	2,2145	45,3429	48,5817
	Varianz	65,061	4,904	2055,980	2360,181
is	N	56	56	56	56
	Mittelwert	40,2311	9,7486	99,6288	106,7452
	Standard- abweichung	6,5530	2,1610	40,6333	43,5357
	Varianz	42,941	4,670	1651,066	1895,356
ua	N	56	56	56	56
	Mittelwert	40,9379	10,2136	107,7995	115,4994
	Standard- abweichung	6,0303	1,8845	40,1543	43,0225
	Varianz	36,365	3,551	1612,368	1850,932
us	N	56	56	56	56
	Mittelwert	39,9470	9,3280	89,9055	96,3273
	Standard- abweichung	5,5960	1,7147	31,8833	34,1607
	Varianz	31,315	2,940	1016,544	1166,950
t	N	56	56	56	56
	Mittelwert	44,2007	6,8670	50,2166	53,8035
	Standard- abweichung	10,8853	1,7689	24,0458	25,7633
	Varianz	118,490	3,129	578,200	663,750
b	N	56	56	56	56
	Mittelwert	43,5223	7,6400	62,5039	66,9685
	Standard- abweichung	10,1272	2,0519	33,5089	35,9024
	Varianz	102,560	4,210	1122,849	1288,985
Insges amt	N	448	448	448	448

Mittelwert	41,1732	9,5659	98,5229	105,5602
Standard- abweichung	8,1479	2,6519	53,0178	56,8048
Varianz	66,388	7,033	2810,886	3226,782

12.1.4 Kennwerte der Schätzwerte für die Rauchergruppen

Raucher		über alle Hörer gemittelte Alters- schätzung	Standard- abweichung des geschätzten Alters	Varianz des geschätzten Alters	Varianz d. ges. Alters in der Hörerpopula tion
nein	N	302	302	302	302
	Mittelwert	41,6382	9,7121	101,1941	108,4223
	Standard- abweichung	8,5058	2,6255	53,4694	57,2887
	Varianz	72,349	6,893	2858,980	3281,992
ja	N	86	86	86	86
	Mittelwert	39,9257	9,0385	88,3363	94,6461
	Standard- abweichung	7,1444	2,5920	46,5930	49,9211
	Varianz	51,042	6,718	2170,910	2492,116
gele./früher	N	60	60	60	60
	Mittelwert	40,6203	9,5857	99,6783	106,7981
	Standard- abweichung	7,5265	2,8141	58,2553	62,4163
	Varianz	56,649	7,919	3393,675	3895,800
Insgesamt	N	448	448	448	448
	Mittelwert	41,1732	9,5659	98,5229	105,5602
	Standard- abweichung	8,1479	2,6519	53,0178	56,8048
	Varianz	66,388	7,033	2810,886	3226,782

12.2 Die Faktoren der Altersschätzungen

12.2.1 Akzent als Faktor

12.2.1.1 Einfluss auf die Höhe der Altersschätzung

Statistik für Kruskal-Wallis-Test

	arithme tischer Mittelw ert der Alterss chätzun gen	arithme tischer Mittelw ert der Alterss chätzun gen	arithme tischer Mittelw ert der Alterss chätzun gen (ia)	arithme tischer Mittelw ert der Alterss chätzun gen (is)	arithme tischer Mittelw ert der Alterss chätzun gen (ua)	arithme tischer Mittelw ert der Alterss chätzun gen (us)	arithme tischer Mittelw ert der Alterss chätzun gen (t)	arithme tischer Mittelw ert der Alterss chätzun gen (b)
	(aa)	(as)			(uu)	(43)		
Chi ²	7,194	6,249	,398	2,827	5,486	2,066	2,110	1,654
Chi ²	` '	` '	,398	2,827	` '	` '	2,110	1,654 3

12.2.1.2 Einfluss auf die Varianz der Altersschätzung

Statistik für Kruskal-Wallis-Test

	ges. Varianz in der Hörer- populat ion (aa)	ges. Varianz in der Hörerp opulati on (as)	ges. Varianz in der Hörerp opulati on (ia)	ges. Varianz in der Hörerp opulati on (is)	ges. Varianz in der Hörerp opulati on (ua)	ges. Varianz in der Hörerp opulati on (us)	ges. Varianz in der Hörerp opulati on (t)	ges. Varianz in der Hörerp opulati on (b)
Chi²	,852	4,299	1,778	6,388	2,621	,346	3,996	2,898
df	3	3	3	3	3	3	3	3
Asymp. Sign.	,837	,231	,620	,094	,454	,951	,262	,408

12.2.2 Rauchverhalten und Sprachstimulustyp als Faktoren (Multivariater mehrfaktorieller Test nach dem ALM)

Multivariate Tests

Effekt	10013		Wert	F	Hypothese df	Fehler df	Signifikanz
Zwischen	Intercept	Pillai-Spur	,967	752,211	2,000	52,000	.000
den Sub-		Wilks-Lambda	,033	752,211	2,000	52,000	,000
jekten		Hotelling-Spur	28,931	752,211	2,000	52,000	,000
		Größte	28,931	752,211	2,000	52,000	,000
		charakteristisc			_,,,,,	,,,,,,	,,,,,,
		he Wurzel nach					
		Roy					
	RAUCHER	Pillai-Spur	,074	1,023	4,000	106,000	,399
		Wilks-Lambda	,926	1,022	4,000	104,000	,400
		Hotelling-Spur	,080	1,020	4,000	102,000	,401
		Größte	,078	2,074	2,000	53,000	,136
		charakteristisc					
		he Wurzel nach					
		Roy					
Innerhalb	SPRECHB	Pillai-Spur	,818	12,882	14,000	40,000	,000
der		Wilks-Lambda	,182	12,882	14,000	40,000	,000
Subjekte		Hotelling-Spur	4,509	12,882	14,000	40,000	,000
		Größte	4,509	12,882	14,000	40,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy	_				
	SPRECHB	Pillai-Spur	,495	,962	28,000	82,000	,529
	*	Wilks-Lambda	,562	,954	28,000	80,000	,539
	RAUCHER	Hotelling-Spur	,679	,946	28,000	78,000	,551
		Größte	,461	1,350	14,000	41,000	,222
		charakteristisc					
		he Wurzel nach					
		Roy					

Geschätzte Randmittel Sprechbedingung

•		Mittelwert	Standardfehler	95% Konfidenz- intervall	
Maß	SPRECHB			Untergrenze	Obergrenze
HÖMITTEL	1	39,627	1,410	36,800	42,455
	2	39,657	1,257	37,135	42,178

	3	41,050	1,391	38,260	43,840
	4	39,825	1,131	37,557	42,094
	5	40,801	1,038	38,719	42,883
	6	39,658	,965	37,722	41,594
	7	43,474	1,871	39,721	47,227
	8	42,567	1,728	39,102	46,032
GESVAR	1	154,974	13,181	128,537	181,411
	2	135,009	10,012	114,928	155,090
	3	122,375	8,298	105,731	139,019
	4	99,066	7,163	84,700	113,433
	5	107,858	7,168	93,482	122,235
	6	96,853	5,912	84,995	108,710
	7	55,538	4,094	47,326	63,749
	8	58,004	5,768	46,434	69,574

12.2.3 Test der Varianzfaktoren der Hörerschätzungen mit Kovariate chronologisches Alter

Multivariate Tests

Effekt			Wert	F	Hypothese df	Fehler df	Sig.
Zwischen	Intercept	Pillai-Spur	,819	115,478	2,000	51,000	,000
den Sub-		Wilks-Lambda	,181	115,478	2,000	51,000	,000
jekten		Hotelling-Spur	4,529	115,478	2,000	51,000	,000
		Größte	4,529	115,478	2,000	51,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy					
	ALTER	Pillai-Spur	,655	48,370	2,000	51,000	,000
		Wilks-Lambda	,345	48,370	2,000	51,000	,000
		Hotelling-Spur	1,897	48,370	2,000	51,000	,000
		Größte	1,897	48,370	2,000	51,000	,000
		charakteristisc					
		he Wurzel nach					
	BALLOUEB	Roy	407	4 400	4.000	404.000	0.47
	RAUCHER	Pillai-Spur	,107	1,468	4,000	104,000	,217
		Wilks-Lambda	,894	1,472	4,000	102,000	,216
		Hotelling-Spur	,118	1,476	4,000	100,000	,215
		Größte	,111	2,888	2,000	52,000	,065
		charakteristisc					
		he Wurzel nach					
ماله مایده سیا	CDDECUB	Roy	622	4 704	14.000	20.000	000
Innerhalb der	SPRECHB	Pillai-Spur	,632	4,781	14,000	39,000	,000
uer Subjekte		Wilks-Lambda	,368	4,781	14,000	39,000	,000
Subjekte		Hotelling-Spur	1,716	4,781	14,000	39,000	,000
		Größte charakteristisc	1,716	4,781	14,000	39,000	,000
		he Wurzel nach					
		Roy					
	SPRECHB	Pillai-Spur	,745	8,150	14,000	39,000	,000
	* ALTER	Wilks-Lambda	,255	8,150	14,000	39,000	,000
	ALIEN	Hotelling-Spur	2,926	8,150	14,000	39,000	,000
		Größte	2,926	8,150	14,000	39,000	,000
		charakteristisc	2,320	0,130	14,000	39,000	,000
		he Wurzel nach					
		Roy					
	SPRECHB	Pillai-Spur	.554	1,094	28,000	80,000	,368
	JI KLOIID	ı mai opai	,004	1,004	_0,000	00,000	,000

*	Wilks-Lambda	,521	1,073	28,000	78,000	,392
RAUCHER	Hotelling-Spur	,775	1,051	28,000	76,000	,418
	Größte	,467	1,334	14,000	40,000	,231
	charakteristisc					
	he Wurzel nach					
	Roy					

Geschätzte Randmittel

Sprechbedingung

		Mittelwert	Standardfehler	95% Konfidenz- intervall	
Maß	SPRECHB			Untergrenze	Obergrenze
HÖMITTEL	1	40,374	1,182	38,002	42,746
	2	40,212	1,127	37,950	42,475
	3	42,018	,944	40,123	43,913
	4	40,476	,906	38,658	42,295
	5	41,241	,941	39,352	43,130
	6	39,980	,918	38,138	41,822
	7	44,992	,944	43,098	46,887
	8	43,958	,892	42,169	45,747
GESVAR	1	157,075	13,219	130,549	183,601
	2	135,396	10,182	114,964	155,827
	3	125,027	7,936	109,102	140,953
	4	100,702	7,069	86,517	114,888
	5	110,481	6,713	97,011	123,951
	6	96,349	5,992	84,324	108,373
	7	56,598	4,004	48,563	64,632
	8	58,113	5,870	46,334	69,892

12.2.4 Test der Varianzfaktoren der Hörerschätzungen mit Kovariate chronologisches Alter bei zusammengefassten Sprechstimulustypen

Multivariate Tests

Effekt			Wert	F	Hypothese df	Fehler df	Sig.
Zwischen	Intercept	Pillai-Spur	,810	108,603	2,000	51,000	,000
den Sub-		Wilks-Lambda	,190	108,603	2,000	51,000	,000
jekten		Hotelling-Spur	4,259	108,603	2,000	51,000	,000
		Größte	4,259	108,603	2,000	51,000	,000
		charakteristisc					
		he Wurzel nach Roy					
	ALTER	Pillai-Spur	,696	58,331	2,000	51,000	,000
		Wilks-Lambda	,304	58,331	2,000	51,000	,000
		Hotelling-Spur	2,288	58,331	2,000	51,000	,000
		Größte	2,288	58,331	2,000	51,000	,000
		charakteristisc he Wurzel nach Roy	·				
	RAUCHER	Pillai-Spur	,130	1,810	4,000	104,000	,132
		Wilks-Lambda	,871	1,828	4,000	102,000	,129
		Hotelling-Spur	,148	1,844	4,000	100,000	,126
		Größte charakteristisc he Wurzel nach Roy	,140	3,651	2,000	52,000	,033

Innerhalb	BEDING	Pillai-Spur	,444	9,795	4,000	49,000	,000
der		Wilks-Lambda	,556	9,795	4,000	49,000	,000
Subjekte		Hotelling-Spur	,800	9,795	4,000	49,000	,000
		Größte	,800	9,795	4,000	49,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy					
	BEDING *	Pillai-Spur	,554	15,190	4,000	49,000	,000
	ALTER	Wilks-Lambda	,446	15,190	4,000	49,000	,000
		Hotelling-Spur	1,240	15,190	4,000	49,000	,000
		Größte	1,240	15,190	4,000	49,000	,000
		charakteristisc					
		he Wurzel nach					
		Roy					
	BEDING *	Pillai-Spur	,100	,657	8,000	100,000	,728
	RAUCHER	Wilks-Lambda	,902	,649	8,000	98,000	,735
		Hotelling-Spur	,107	,640	8,000	96,000	,742
		Größte	,082	1,020	4,000	50,000	,406
		charakteristisc					
		he Wurzel nach					
		Roy					

12.3 Nicht normalverteilte akustische Parameter

Die folgenden akustischen Parameter sind auf dem 5%-Niveau nicht hinreichend normalverteilt:

Parameter	im Stimulustyp
SD(F0)	/a/-Mittelteil
	/u/-Anfang
Jita	/a/-Mittelteil
	/u/-Anfang
	/u/-Mittelteil
Jitt	/a/-Mittelteil
	/u/-Mittelteil
RAP	/a/-Mittelteil
	/u/-Mittelteil
PPQ	/a/-Anfang
	/a/-Mittelteil
	/u/-Mittelteil
sPPQ	/a/-Anfang
	/a/-Mittelteil
	/u/-Anfang
	/u/-Mittelteil
vF0	/a/-Mittelteil
OL UD	/u/-Anfang
ShdB	/i/-Mittelteil
	/u/-Anfang
Oleiter	/u/-Mittelteil
Shim	/u/-Anfang
ADO	/u/-Mittelteil
APQ	/u/-Anfang
A	/u/-Mittelteil
vAm	/a/-Mittelteil /u/-Mittelteil
NHR	Bild
VTI	Bild
N(P)	Text Bild
FTRI	-
LIKI	/u/-Anfang

12.4 Varianzfaktoren der akustischen Parameter

Univariate Tests

Die Berechnung der Effekte der Faktoren nach dem klassischen Verfahren nach Fisher ist für jeden Parameter in der Zeile "Sphärizität angenommen" zu finden.

Quelle	Maß	"Spnarizitat anger	Quadrat-	df	Mittel der	F	Sig.
Quono	ividi3		summe		Quadrate	-	Olg.
			vom Typ III				
SPREBED	F0	Sphärizität	37961,123	7	5423,018	13,662	,000
		angenommen			,	,	,
		Greenhouse-	37961,123	2,628	14444,520	13,662	,000
		Geisser					
		Huynh-Feldt	37961,123	2,882	13171,829	13,662	,000
		Untergrenze	37961,123	1,000	37961,123	13,662	,001
	JITA	Sphärizität	837053,203	7	119579,029	71,532	,000
		angenommen					
		Greenhouse-	837053,203	4,624	181027,617	71,532	,000
		Geisser					
		Huynh-Feldt	837053,203	5,311	157599,605	71,532	,000
		Untergrenze	837053,203	1,000	837053,203	71,532	,000
	JITT	Sphärizität	305,757	7	43,680	85,218	,000
		angenommen	005 555	4.000	04.000	0.5.040	000
		Greenhouse-	305,757	4,960	61,639	85,218	,000
		Geisser	005 757	F 744	50.000	05.040	000
		Huynh-Feldt	305,757	5,741	53,260	85,218	,000
	DAD	Untergrenze	305,757	1,000	305,757	85,218	,000
	RAP	Sphärizität	86,703	7	12,386	63,818	,000
		angenommen	96 702	4.024	17.610	62 040	000
		Greenhouse- Geisser	86,703	4,921	17,619	63,818	,000
		Huynh-Feldt	86,703	5,690	15,238	63,818	,000
		Untergrenze	86,703	1,000	86,703	63,818	,000
	PPQ	Sphärizität	151,966	7	21,709	108,696	,000
	110	angenommen	131,300	,	21,703	100,000	,000
		Greenhouse-	151,966	4,601	33,030	108,696	,000
		Geisser	,	1,001			,
		Huynh-Feldt	151,966	5,282	28,770	108,696	,000
		Untergrenze	151,966	1,000	151,966	108,696	,000
	SPPQ	Sphärizität	2780,522	7	397,217	230,470	,000
		angenommen			·		•
		Greenhouse-	2780,522	2,315	1201,222	230,470	,000
		Geisser					
		Huynh-Feldt	2780,522	2,518	1104,257	230,470	,000
		Untergrenze	2780,522	1,000	2780,522	230,470	,000
	SF0	Sphärizität	70085,568	7	10012,224	277,533	,000
		angenommen	70005 500	0.050	04450 50 1	077.500	000
		Greenhouse-	70085,568	2,250	31153,734	277,533	,000
		Geisser	70005 500	2 4 4 2	20600 600	277 522	000
		Huynh-Feldt	70085,568	2,443	28688,699	277,533	,000
	VF0	Untergrenze Sphärizität	70085,568	1,000 7	70085,568	277,533 331,695	,000
	VIU	'	16385,391	'	2340,770	331,093	,000
		Greenhouse-	16385,391	2,775	5903,789	331,695	,000
		Geisser	10000,001	2,113	3303,709	001,090	,500
		Huynh-Feldt	16385,391	3,055	5363,942	331,695	,000
		Untergrenze	16385,391	1,000	16385,391	331,695	,000
	SHIMA	Sphärizität	42,348	7	6,050	315,789	,000
		angenommen	12,010	'	5,555	0.0,700	,555
	ı	Langonominon	1	1		1	1

		Greenhouse-	42,348	3,544	11,950	315,789	,000
		Geisser	12,010	0,0 1 1	1.,,555	3.5,755	,000
		Huynh-Feldt	42,348	3,972	10,661	315,789	,000
		Untergrenze	42,348	1,000	42,348	315,789	,000
	SHIMM	Sphärizität	2986,582	7	426,655	206,986	,000
		angenommen	2000,002	'	120,000	200,000	,000
		Greenhouse-	2986,582	3,475	859,519	206,986	,000
		Geisser	2000,002	0,170	000,010	200,000	,000
		Huynh-Feldt	2986,582	3,889	768,036	206,986	,000
		Untergrenze	2986,582	1,000	2986,582	206,986	,000
	APQ	Sphärizität	5587,599	7	798,228	453,480	,000
	/ · · · · ·	angenommen	0007,000	'	700,220	100, 100	,000
		Greenhouse-	5587,599	3,179	1757,628	453,480	,000
		Geisser	0001,000	,	,	100,100	,000
		Huynh-Feldt	5587,599	3,533	1581,457	453,480	,000
		Untergrenze	5587,599	1,000	5587,599	453,480	,000
	SAPQ	Sphärizität	35058,596	7	5008,371	944,190	,000
	J Q	angenommen	33333,333	'	3555,57	3, 100	,000
		Greenhouse-	35058,596	2,728	12850,233	944,190	,000
		Geisser	35555,555			,	,,,,,,
		Huynh-Feldt	35058,596	2,999	11688,794	944,190	,000
		Untergrenze	35058,596	1,000	35058,596	944,190	,000
	VAM	Sphärizität	68800,631	7	9828,662	190,398	,000
	*/3111	angenommen	00000,001	'	0020,002	100,000	,555
		Greenhouse-	68800,631	3,757	18313,405	190,398	,000
		Geisser	33333,331	3,. 3,	1.55.5, 105	100,000	,555
		Huynh-Feldt	68800,631	4,232	16258,306	190,398	,000
		Untergrenze	68800,631	1,000	68800,631	190,398	,000
	NHR	Sphärizität	1,467	7	,210	174,392	,000
		angenommen	1,101	'	,2.0	17 1,002	,000
		Greenhouse-	1,467	4,166	,352	174,392	,000
		Geisser	1,101	1,130	,002	,552	,000
		Huynh-Feldt	1,467	4,736	,310	174,392	,000
		Untergrenze	1,467	1,000	1,467	174,392	,000
	VTI	Sphärizität	4,588	7	,655	22,020	,000
		angenommen	1,555		,,,,,,	,00	,
		Greenhouse-	4,588	1,837	2,497	22,020	,000
		Geisser	1,230	,,,,,,,,,	_,	,	,
		Huynh-Feldt	4,588	1,972	2,327	22,020	,000
		Untergrenze	4,588	1,000	4,588	22,020	,000
	SPI	Sphärizität	387377,122	7	55339,589	116,683	,000
		angenommen		'		,,,,,,,,,	,
		Greenhouse-	387377,122	1,839	210664,143	116,683	,000
		Geisser		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,
		Huynh-Feldt	387377,122	1,974	196273,174	116,683	,000
		Untergrenze	387377,122	1,000	387377,122	116,683	,000
SPREBED	F0	Sphärizität	2477,199	14	176,943	,446	,959
*		angenommen				,	,
RAUCHER		Greenhouse-	2477,199	5,256	471,297	,446	,825
		Geisser		-,	,	,	,
		Huynh-Feldt	2477,199	5,764	429,772	,446	,840
		Untergrenze	2477,199	2,000	1238,599	,446	,643
	JITA	Sphärizität	37628,623	14	2687,759	1,608	,075
		angenommen	1. 525,525			.,555	, , , , ,
		Greenhouse-	37628,623	9,248	4068,929	1,608	,111
		Geisser	3.020,020	0,2.0	1000,020	1,000	,
		Huynh-Feldt	37628,623	10,623	3542,341	1,608	,099
		Untergrenze	37628,623	2,000	18814,312	1,608	,210
<u> </u>	I	Jinorgronze	01020,020		10017,012	1,000	, <u>~</u> 10

	JITT	Sphärizität	11,194	14	,800	1,560	,088
•	JIII	angenommen	11,194	14	,800	1,500	,000
		Greenhouse-	11,194	9,921	1,128	1,560	,119
		Geisser	11,101	0,021	1,120	1,000	,,,,
		Huynh-Feldt	11,194	11,482	,975	1,560	,106
		Untergrenze	11,194	2,000	5,597	1,560	,220
	RAP	Sphärizität	4,300	14	,307	1,582	,081
		angenommen					
		Greenhouse-	4,300	9,842	,437	1,582	,113
		Geisser	4.000	11.000	0.70	4.500	100
		Huynh-Feldt	4,300	11,380	,378	1,582	,100
<u> </u>	DDO	Untergrenze	4,300	2,000	2,150	1,582	,215
	PPQ	Sphärizität angenommen	4,572	14	,327	1,635	,068
		Greenhouse-	4,572	9,202	,497	1,635	,104
		Geisser	4,572	3,202	,437	1,000	, 104
		Huynh-Feldt	4,572	10,564	.433	1,635	,092
		Untergrenze	4,572	2,000	2,286	1,635	,205
:	SPPQ	Sphärizität	22,433	14	1,602	,930	,527
		angenommen					
		Greenhouse-	22,433	4,629	4,846	,930	,459
		Geisser	00 :55			000	1.2.
		Huynh-Feldt	22,433	5,036	4,454	,930	,464
<u> </u>	050	Untergrenze	22,433	2,000	11,216	,930	,401
	SF0	Sphärizität	617,754	14	44,125	1,223	,256
		angenommen Greenhouse-	617,754	4,499	137,299	1,223	,304
		Geisser	017,734	4,499	137,299	1,223	,304
		Huynh-Feldt	617,754	4,886	126,435	1,223	,302
		Untergrenze	617,754	2,000	308,877	1,223	,302
	VF0	Sphärizität	167,626	14	11,973	1,697	,054
		angenommen			,		
		Greenhouse-	167,626	5,551	30,198	1,697	,131
		Geisser					
		Huynh-Feldt	167,626	6,109	27,437	1,697	,124
<u> </u>	0111111	Untergrenze	167,626	2,000	83,813	1,697	,193
	SHIMA	Sphärizität	,249	14	1,779E-02	,929	,528
		angenommen Greenhouse-	,249	7,087	3,514E-02	,929	,486
		Geisser	,279	1,007	J,J 14L-02	,323	,+00
		Huynh-Feldt	,249	7,944	3,135E-02	,929	,493
		Untergrenze	,249	2,000	,125	,929	,401
:	SHIMM	Sphärizität	19,777	14	1,413	,685	,789
		angenommen					
		Greenhouse-	19,777	6,949	2,846	,685	,683
		Geisser	40 777	7	0.540	005	700
		Huynh-Feldt	19,777	7,777	2,543	,685	,700
	ADO	Untergrenze	19,777	2,000	9,889	,685	,508
	APQ	Sphärizität angenommen	21,718	14	1,551	,881	,580
		Greenhouse-	21,718	6,358	3,416	,881	,515
		Geisser	21,770	0,000	3,410	,5501	,515
		Huynh-Feldt	21,718	7,066	3,073	,881	,523
		Untergrenze	21,718	2,000	10,859	,881	,420
	SAPQ	Sphärizität	90,993	14	6,499	1,225	,254
		angenommen					
		Greenhouse-	90,993	5,456	16,676	1,225	,299
		Geisser					
		Huynh-Feldt	90,993	5,999	15,169	1,225	,296

		Untergrenze	90,993	2,000	45,496	1,225	,302
	VAM	Sphärizität angenommen	387,465	14	27,676	,536	,911
		Greenhouse- Geisser	387,465	7,514	51,568	,536	,818
		Huynh-Feldt	387,465	8,463	45,781	,536	,838
		Untergrenze	387,465	2,000	193,733	,536	,588
	NHR	Sphärizität angenommen	1,149E-02	14	8,208E-04	,683	,791
		Greenhouse- Geisser	1,149E-02	8,331	1,379E-03	,683	,712
		Huynh-Feldt	1,149E-02	9,472	1,213E-03	,683	,732
		Untergrenze	1,149E-02	2,000	5,746E-03	,683	,510
	VTI	Sphärizität angenommen	,872	14	6,228E-02	2,093	,012
		Greenhouse- Geisser	,872	3,674	,237	2,093	,093
		Huynh-Feldt	,872	3,943	,221	2,093	,088
		Untergrenze	,872	2,000	,436	2,093	,133
	SPI	Sphärizität angenommen	6434,747	14	459,625	,969	,485
		Greenhouse- Geisser	6434,747	3,678	1749,678	,969	,423
		Huynh-Feldt	6434,747	3,947	1630,153	,969	,427
		Untergrenze	6434,747	2,000	3217,373	,969	,386
Fehler(SPR EBED)	F0	Sphärizität angenommen	147263,799	371	396,937		
		Greenhouse- Geisser	147263,799	139,287	1057,266		
		Huynh-Feldt	147263,799	152,746	964,111		1
		Untergrenze	147263,799	53,000	2778,562		1
	JITA	Sphärizität angenommen	620191,121	371	1671,674		
		Greenhouse- Geisser	620191,121	245,067	2530,705		
		Huynh-Feldt	620191,121	281,497	2203,189		1
		Untergrenze	620191,121	53,000	11701,719		1
	JITT	Sphärizität angenommen	190,161	371	,513		
		Greenhouse- Geisser	190,161	262,905	,723		
		Huynh-Feldt	190,161	304,263	,625		1
		Untergrenze	190,161	53,000	3,588	1	1
	RAP	Sphärizität angenommen	72,005	371	,194		
		Greenhouse- Geisser	72,005	260,805	,276		
		Huynh-Feldt	72,005	301,567	,239		
		Untergrenze	72,005	53,000	1,359		1
	PPQ	Sphärizität angenommen	74,098	371	,200		
		Greenhouse- Geisser	74,098	243,843	,304		
		Huynh-Feldt	74,098	279,947	,265		1
		Untergrenze	74,098	53,000	1,398		1
	SPPQ	Sphärizität angenommen	639,423	371	1,724		
		Greenhouse- Geisser	639,423	122,681	5,212		

	Huynh-Feldt	639,423	133,454	4,791		
	Untergrenze	639,423	53,000	12,065		
SF0	Sphärizität angenommen	13384,138	371	36,076		
	Greenhouse- Geisser	13384,138	119,232	112,253		
	Huynh-Feldt	13384,138	129,477	103,371		
	Untergrenze	13384,138	53,000	252,531		
VF0	Sphärizität angenommen	2618,142	371	7,057		
	Greenhouse- Geisser	2618,142	147,096	17,799		
	Huynh-Feldt	2618,142	161,901	16,171		
	Untergrenze	2618,142	53,000	49,399		
SHIMA	Sphärizität	7,107	371	1,916E-02		
	angenommen					
	Greenhouse-	7,107	187,817	3,784E-02		
	Geisser					
	Huynh-Feldt	7,107	210,524	3,376E-02		
	Untergrenze	7,107	53,000	,134		
SHIMM	angenommen	764,732	371	2,061		
	Greenhouse- Geisser	764,732	184,160	4,153		
	Huynh-Feldt	764,732	206,096	3,711	1	
480	Untergrenze	764,732	53,000	14,429	1	
APQ	Sphärizität angenommen	653,045	371	1,760		
	Greenhouse-	653,045	168,490	3,876		
	Geisser	653,045	187,259	3,487		
	Huynh-Feldt	653,045		12,322	+	
SAPQ	Untergrenze Sphärizität	1967,935	53,000 371	5,304		
SAFQ	angenommen Greenhouse-	1967,935	144,597	13,610		
	Geisser	,	Ĺ	12,380		
	Huynh-Feldt	1967,935	158,965		+	
VAM	Untergrenze Sphärizität	1967,935 19151,627	53,000 371	37,131 51,622	+	
A WIAI	angenommen	19191,027	37 1	01,022		
	Greenhouse- Geisser	19151,627	199,113	96,185		
	Huynh-Feldt	19151,627	224,281	85,391		
	Untergrenze	19151,627	53,000	361,351		
NHR	Sphärizität angenommen	,446	371	1,202E-03		
	Greenhouse- Geisser	,446	220,781	2,020E-03		
	Huynh-Feldt	,446	251,006	1,776E-03		
	Untergrenze	,446	53,000	8,413E-03		
VTI	Sphärizität	11,043	371	2,976E-02		
	angenommen					
	Greenhouse- Geisser	11,043	97,365	,113		
	Huynh-Feldt	11,043	104,499	,106		
	Untergrenze	11,043	53,000	,208		
SPI	Sphärizität angenommen	175955,667	371	474,274		

Greenhouse-	175955,667	97,458	1805,444	
Geisser				
Huynh-Feldt	175955,667	104,604	1682,110	
Untergrenze	175955,667	53,000	3319,918	

12.5 Mittelwerte der Parameter

Parameter	aa	as	ia	is	ua	us	t	b
F0 [Hz]	192,860	191,490	219,374	218,0159	220,640	218,453	201,942	210,098
Jita [μs]	65,7687	69,6874	55,6350	49,6721	60,4847	55,7132	194,964	170,303
Jitt [%]	1,2089	1,2290	1,1619	1,0150	1,2481	1,1366	3,7224	3,3928
RAP [%]	,7158	,7444	,6894	,6128	,7473	,6976	2,0474	1,8939
PPQ [%]	,6990	,7035	,6649	,5853	,7066	,6305	2,4721	2,2200
sPPQ [%]	1,0232	1,1085	,8909	,7712	1,0119	,8201	8,6724	7,5307
SD(F0) [HZ]	4,4931	3,1039	4,8689	2,7635	6,0367	2,6489	38,6536	41,1011
vF0 [%]	2,3645	1,7981	2,2661	1,3002	2,8570	1,2482	18,9971	19,5581
ShdB	,3564	,3558	,1951	,1809	,2018	,1734	1,1925	1,0137
Shim [%]	4,0684	4,0131	2,1573	2,0702	2,2399	1,9809	10,5674	9,2945
APQ [%]	2,9596	2,9022	1,5200	1,4527	1,5866	1,4189	13,1002	10,8519
sAPQ [%]	5,6648	5,3985	3,1356	2,8406	3,3907	2,9421	31,8331	27,0109
vAm [%]	28,7584	14,5505	16,8746	7,4705	16,1670	7,4327	47,9690	48,4150
NHR	,1348	,1300	,1058	,1065	,1107	,1111	,2961	,2644
VTI	0,03350	0,03411	0,03202	0,03018	0,01875	0,02061	,4061	,2895
SPI	23,1583	26,3117	22,3827	22,7048	107,547	111,011	20,8892	26,3797
FTRI	0,5792	0,4183	0,5953	0,3707	0,5634	0,3614	2,3576	1,9651
ATRI	9,0812	6,5547	5,2335	2,9128	4,9613	3,6159	7,3684	5,8203
AR [Silb/s]							4,83514	4,24264
t [s]							11,5257	
t(Pau) [s]							1,14141	
N(Pau)							2,91	

12.6 Korrelationen der Alterswerte mit den akustischen Parametern

12.6.1 /a/-Anfang

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzungen
F0	Pearsons r	-,290	-,481	-,036
	Sig. (1-seitig)	,015	,000	,396
Jita	Pearsons r	,015	,013	-,005
	Sig. (1-seitig)	,456	,462	,485
Jitt	Pearsons r	-,052	-,127	-,054
	Sig. (1-seitig)	,353	,175	,346
RAP	Pearsons r	-,066	-,138	-,059
	Sig. (1-seitig)	,313	,156	,332
PPQ	Kendalls τ	-,094	,008	,092
	Sig. (1-seitig)	,156	,466	,159
sPPQ	Kendalls τ	,096	,139	,078
	Sig. (1-seitig)	,151	.066	,198
SD(F0)	Pearsons r	-,009	-,030	,131
62 (1.6)	Sig. (1-seitig)	,474	,412	,167
vF0	Pearsons r	,093	,154	,152
VI 0	Sig. (1-seitig)	,247	,129	,132
ShdB	Pearsons r	,124	,327	,286
Onab	Sig. (1-seitig)	,181	,007	,016
Shim	Pearsons r	,086	,256	,281
5 111111	Sig. (1-seitig)	,263	,028	,018
APQ	Pearsons r	,154	,338	,272
AI Q	Sig. (1-seitig)	,129	,005	,021
sAPQ	Pearsons r	,129	,418	
SAFQ	Sig. (1-seitig)	,002	,418	,024
vAm	Pearsons r	,166	,139	-,102
VAIII	Sig. (1-seitig)	,111	,154	,226
NHR	Pearsons r	,038	,238	,328
NHK	Sig. (1-seitig)	,391	,038	,007
VTI	Pearsons r	-,009	.007	-,192
VII	Sig. (1-seitig)	,473	,480	,078
SPI	Pearsons r	,473	,480 ,418	-,084
3F1		,173	,418	,270
FTRI	Sig. (1-seitig)			
FIKI	Pearsons r	,433	,364	,255
ATDI	Sig. (1-seitig)	,002	,008	,050
ATRI	Pearsons r	,036	,229	,104
Kamalatianan dia antahan	Sig. (1-seitig)	,441	,172	,336

12.6.2 /a/-Mittelteil

akustischer Parameter	Prüfgröße	Alter	arithme Mittelwe Alters- schätzu	ert der Ingen	Alters	zunge
F0	Pearsons r	-,30°		-,498		-,308
	Sig. (1-seitig)	,012	2	,000		,011
Jita	Kendalls τ	-,014	,070		,174	
	Sig. (1-seitig)	,438	,223		,029	
Jitt	Kendalls τ	-,068	,001		,151	
	Sig. (1-seitig)	,233	,497		,050	
RAP	Kendalls τ	-,070	-,003		,151	
	Sig. (1-seitig)	,225	,486		,050	
PPQ	Kendalls τ	-,034	,004		,129	
	Sig. (1-seitig)	,356	,483		,081	
sPPQ	Kendalls τ	,010	,110		,159	
	Sig. (1-seitig)	,458	,116		,042	
SD(F0)	Kendalls τ	-,006	-,005		,125	
,	Sig. (1-seitig)	,475	,480		,086	
vF0	Kendalls τ	,056	,138		,199	
	Sig. (1-seitig)	,271	,067		,015	
ShdB	Pearsons r	,132	,	,377	,	,523
	Sig. (1-seitig)	,166		,002		,000
Shim	Pearsons r	,126		,361		,515
	Sig. (1-seitig)	,177		,003		,000
APQ	Pearsons r	,186		,419		,536
	Sig. (1-seitig)	,085		,001		,000
sAPQ	Pearsons r	,32	6	,469		,393
	Sig. (1-seitig)	,00	7	,000		,001
vAm	Kendalls τ	,239	9	,226	,116	
	Sig. (1-seitig)	,00	5	,007	,104	
NHR	Pearsons r	,025	,252			,470
	Sig. (1-seitig)	,427	,031			,000
VTI	Pearsons r	,068	,117		,073	
	Sig. (1-seitig)	,308	,196		,296	
SPI	Pearsons r	,174		,327	,047	
	Sig. (1-seitig)	,100		,007	,366	
FTRI	Pearsons r	,291	,208		,232	
	Sig. (1-seitig)	,021	,076		,055	
ATRI	Pearsons r	,084	,198		,289	
	Sig. (1-seitig)	,033	,143		,068	•

12.6.3 /i/-Anfang

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzungen
F0	Pearsons r	-,039	-,016	,040
	Sig. (1-seitig)	,388	,452	,385
Jita	Pearsons r	-,014	-,195	,193
	Sig. (1-seitig)	,460	,074	,077
Jitt	Pearsons r	-,011	-,225	,236
	Sig. (1-seitig)	,468	,048	,040
RAP	Pearsons r	-,021	-,231	,232
	Sig. (1-seitig)	,440	,043	,042
PPQ	Pearsons r	-,013	-,230	,227
	Sig. (1-seitig)	,461	,044	,047
sPPQ	Pearsons r	,110	-,027	,351
	Sig. (1-seitig)	,211	,421	,004
SD(F0)	Pearsons r	,396	,233	,325
` '	Sig. (1-seitig)	,001		,007
vF0	Pearsons r	,328		,304
	Sig. (1-seitig)	,007	,095	,011
ShdB	Pearsons r	,109	-,005	-,081
	Sig. (1-seitig)	,212	,484	,275
Shim	Pearsons r	,039	-,077	-,079
	Sig. (1-seitig)	,388	,286	,282
APQ	Pearsons r	,043	-,018	-,055
	Sig. (1-seitig)	,378	,447	,345
sAPQ	Pearsons r	,296	,278	,235
	Sig. (1-seitig)	,014	,019	,041
vAm	Pearsons r	,185	,077	,107
	Sig. (1-seitig)	,086	,287	,216
NHR	Pearsons r	,112	,086	-,122
	Sig. (1-seitig)	,207	,264	,186
VTI	Pearsons r	-,103	,054	-,138
	Sig. (1-seitig)	,225	,347	,156
SPI	Pearsons r	,117	-,065	,294
	Sig. (1-seitig)	,195	,317	,014
FTRI	Pearsons r	,469	,366	,013
	Sig. (1-seitig)	,000	,007	
ATRI	Pearsons r	,380	,267	-,165
	Sig. (1-seitig)	,082	,168	,278

12.6.4 /i/-Mittelteil

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzunge n
F0	Pearsons r	-,054	-,105	,005
	Sig. (1-seitig)	,346	,221	,486
Jita	Pearsons r	-,019	-,019	,037
	Sig. (1-seitig)	,445	,446	,395
Jitt	Pearsons r	-,035	-,036	,003
	Sig. (1-seitig)	,399	,397	,492
RAP	Pearsons r	-,033	-,038	,006
	Sig. (1-seitig)	,406	,390	,483
PPQ	Pearsons r	-,045	-,039	-,015
	Sig. (1-seitig)	,370	,388	,457
sPPQ	Pearsons r	,089	,187	,064
	Sig. (1-seitig)	,257	,084	,319
SD(F0)	Pearsons r	,233	,235	,164
5 2 (1. 3)	Sig. (1-seitig)	,042	,041	,114
vF0	Pearsons r	,202	,225	,188
	Sig. (1-seitig)	,068	,047	,083
ShdB	Kendalls τ	-,074	,042	,232
	Sig. (1-seitig)	,212	,325	,006
Shim	Pearsons r	-,007	,108	,418
	Sig. (1-seitig)	,481	,215	,001
APQ	Pearsons r	,002	,131	,413
	Sig. (1-seitig)	,495	,167	,001
sAPQ	Pearsons r	,138	,339	,407
	Sig. (1-seitig)	,155	,005	,001
vAm	Pearsons r	,192	,194	,353
	Sig. (1-seitig)	,078	,076	,004
NHR	Pearsons r	,008	,195	,268
	Sig. (1-seitig)	,478	,074	,023
VTI	Pearsons r	-,146	-,004	,147
	Sig. (1-seitig)	,141	,490	,139
SPI	Pearsons r	,093	-,052	,132
	Sig. (1-seitig)	,247	,351	,167
FTRI	Pearsons r	,434	,563	,172
	Sig. (1-seitig)	,001	,000	,120
ATRI	Pearsons r	,022	,280	,254
	Sig. (1-seitig)	,451	,068	,077

12.6.5 /u/-Anfang

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzungen
F0	Pearsons r	-,176	-,270	-,055
	Sig. (1-seitig)	,098	,022	,344
Jita	Kendalls τ	-,045	,064	,019
	Sig. (1-seitig)	,315	,244	,416
Jitt	Pearsons r	-,116	,048	,028
	Sig. (1-seitig)	,196	,362	,419
RAP	Pearsons r	-,121	,054	,029
	Sig. (1-seitig)	,187	,347	,417
PPQ	Pearsons r	-,131	-,004	,043
	Sig. (1-seitig)	,167	,489	,378
sPPQ	Kendalls τ	,017	,116	,162
	Sig. (1-seitig)	,427	,104	,039
SD(F0)	Kendalls τ	,054	,092	,186
	Sig. (1-seitig)	,281	,158	,022
vF0	Kendalls τ	,093	,195	,182
	Sig. (1-seitig)	,158	,017	,024
ShdB	Kendalls τ	-,001	,036	,070
	Sig. (1-seitig)	,494	,346	,223
Shim	Kendalls τ	,007	,006	,058
	Sig. (1-seitig)	,469	,475	,265
APQ	Kendalls τ	,009	,036	,062
	Sig. (1-seitig)	,463	,349	,251
sAPQ	Pearsons r	-,015	,151	,254
	Sig. (1-seitig)	,456	,134	,030
vAm	Pearsons r	,183	,102	,045
	Sig. (1-seitig)	,088	,226	,372
NHR	Pearsons r	-,218	,056	-,068
	Sig. (1-seitig)	,053	,340	,308
VTI	Pearsons r	-,156	,008	-,101
	Sig. (1-seitig)	,126	,476	,228
SPI	Pearsons r	-,025	-,153	-,248(!)
	Sig. (1-seitig)	,429	,131	,033
FTRI	Kendalls τ	,211	,216	,154
	Sig. (1-seitig)	,023	,020	,070
ATRI	Pearsons r	,002	.037	-,114
	Sig. (1-seitig)	,497	,437	,312

12.6.6 /u/-Mittelteil

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzunge n
F0	Pearsons r	-,212	-,461	,001
	Sig. (1-seitig)	,059	,000	,498
Jita	Kendalls τ	-,060	,081	,125
	Sig. (1-seitig)	,258	,190	,087
Jitt	Kendalls τ	-,142	-,023	,098
	Sig. (1-seitig)	,062	,402	,143
RAP	Kendalls τ	-,148	-,025	,098
	Sig. (1-seitig)	,055	,394	,145
PPQ	Kendalls τ	-,160(!)	-,047	,094
	Sig. (1-seitig)	,042	,305	,154
sPPQ	Kendalls τ	-,021	,153	,156
	Sig. (1-seitig)	,410	,048	,045
SD(F0)	Pearsons r	-,103	,112	,252
	Sig. (1-seitig)	,224	,207	,031
vF0	Pearsons r	,013	,333	-,103
	Sig. (1-seitig)	,464	,006	,224
ShdB	Kendalls τ	,036	,154	,162
	Sig. (1-seitig)	,349	,047	,039
Shim	Kendalls τ	,039	,156	,165
	Sig. (1-seitig)	,336	,045	,036
APQ	Kendalls τ	,033	,199	,165
	Sig. (1-seitig)	,362	,015	,036
sAPQ	Pearsons r	-,046	,284	,232
	Sig. (1-seitig)	,368	,017	,043
vAm	Kendalls τ	,165	,122	,052
	Sig. (1-seitig)	,037	,092	,286
NHR	Pearsons r	-,103	,169	,142
	Sig. (1-seitig)	,226	,106	,148
VTI	Pearsons r	,035	,094	-,099
	Sig. (1-seitig)	,398	,246	,235
SPI	Pearsons r	,087	,039	,230
	Sig. (1-seitig)	,261	,388	,044
FTRI	Pearsons r	,261	,594	,274
	Sig. (1-seitig)	,040	,000	,033
ATRI	Pearsons r	,253	,012	-,053
	Sig. (1-seitig)	,068	,472	,380

12.6.7 Text

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Varianz der Alters- schätzungen
F0	Pearsons r	-,378	-,396	-,070
	Sig. (1-seitig)	,002	,001	,304
Jita	Pearsons r	,160	,211	,017
	Sig. (1-seitig)	,120	,059	,452
Jitt	Pearsons r	,026	,089	-,007
	Sig. (1-seitig)	,424	,257	,480
RAP	Pearsons r	-,024	,050	-,012
	Sig. (1-seitig)	,429	,357	,466
PPQ	Pearsons r	-,032	,034	-,014
	Sig. (1-seitig)	,409	,401	,459
sPPQ	Pearsons r	,052	,084	,054
	Sig. (1-seitig)	,351	,269	,346
SD(F0)	Pearsons r	-,086	-,073	-,046
	Sig. (1-seitig)	,265	,296	,369
vF0	Pearsons r	,050	,076	-,018
	Sig. (1-seitig)	,357	,289	,447
ShdB	Pearsons r	,218	,231	-,013
	Sig. (1-seitig)	,053	,043	,461
Shim	Pearsons r	,211	,258	,021
	Sig. (1-seitig)	,059	,027	,440
APQ	Pearsons r	,198	,232	,007
	Sig. (1-seitig)	,072	,043	,480
sAPQ	Pearsons r	,109	,140	-,043
	Sig. (1-seitig)	,213	,151	,376
vAm	Pearsons r	,012	,064	,168
	Sig. (1-seitig)	,466	,319	,108
NHR	Pearsons r	,139	,099	-,168
	Sig. (1-seitig)	,154	,234	,108
VTI	Pearsons r	,036	-,020	,011
	Sig. (1-seitig)	,397	,441	,468
SPI	Pearsons r	,121	,135	,216
	Sig. (1-seitig)	,187	,161	,055
FTRI	Pearsons r	-,061	-,040	-,251
	Sig. (1-seitig)	,328	,385	,031
ATRI	Pearsons r	-,072	-,228	-,118
	Sig. (1-seitig)	,299	,046	,194
AR	Pearsons r	-,362	-,415	-,256
	Sig. (1-seitig)	,003	,001	,028
t	Pearsons r	,432	,512	,331
	Sig. (1-seitig)	,000	,000	,006
t(Pau)	Pearsons r	,400	,495	,343
, ·	Sig. (1-seitig)	,001	,000	,005
N(Pau)	Kendalls τ	,277	,190	,174
	Sig. (1-seitig)	,004	,032	,045

12.6.8 Bild

akustischer Parameter	Prüfgröße	Alter	arithmetischer Mittelwert der Alters- schätzungen	Alters- schätzungen
F0	Pearsons r	-,506	-,487	,046
	Sig. (1-seitig)	,000	,000	,369
Jita	Pearsons r	,344	,374	
	Sig. (1-seitig)	,005	,002	,373
Jitt	Pearsons r	,199	,241	,036
	Sig. (1-seitig)	,071	,037	,396
RAP	Pearsons r	,110	,160	,047
	Sig. (1-seitig)	,209	,119	,364
PPQ	Pearsons r	,123	,181	-,008
	Sig. (1-seitig)	,184	,091	,475
sPPQ	Pearsons r	,150	,250	-,147
	Sig. (1-seitig)	,135	,031	,141
SD(F0)	Pearsons r	-,244(!)	-,157	-,134
	Sig. (1-seitig)	,035	,124	,162
vF0	Pearsons r	-,072	,019	-,151
	Sig. (1-seitig)	,299	,446	,133
ShdB	Pearsons r	,519	,548	,075
	Sig. (1-seitig)	,000	,000	,291
Shim	Pearsons r	,466	,505,	,128
	Sig. (1-seitig)	,000	,000	,173
APQ	Pearsons r	,551	,602	,089
	Sig. (1-seitig)	,000	,000	,258
sAPQ	Pearsons r	,473	,553	,047
	Sig. (1-seitig)	,000	,000	,365
vAm	Pearsons r	,220	,318,	-,008
	Sig. (1-seitig)	,051	,008	,477
NHR	Kendalls τ	,121	,110	,066
	Sig. (1-seitig)	,096	,117	,235
VTI	Kendalls τ	,005	,030	,008
	Sig. (1-seitig)	,477	,373	,466
SPI	Pearsons r	,037	,008	-,008
	Sig. (1-seitig)	,394	,475	,478
FTRI	Pearsons r	,038	-,009	-,078
	Sig. (1-seitig)	,393	,476	,278
ATRI	Pearsons r	-,014	-,051	-,139
	Sig. (1-seitig)	,461	,355	,157
	Sig. (1-seitig)	,119	,054	,355
AR	Pearsons r	-,076	-,165	-,180
	Sig. (1-seitig)	,289	,112	,093
	Sig. (1-seitig)	,201	,111	,152

13 Niederschrift der ausgewählten Abschnitte freier Sprechweise

Es folgt eine tabellarische Zusammenstellung der Inhalte der Passagen, die als Beispiele freier Sprechweise im Hörtest beurteilt wurden. Der Zweck dieser Niederschrift besteht darin, die gesprochenen Silben zu ermitteln. Sprechpausen sind durch einen Schrägstrich ("/") gekennzeichnet.

Sprecher- Nr.	Text	Silben
1	des sieht man an der stark ausgeprägt'n Nase und an dem vorspring'nden Kinn/ und sie hat offensichtlich auch ein Kopftuch auf, die Aug'n sind niedergeschlag'n/ die Frisur zersaust	46
2	zuerst sieht man eine/ jüngere Frau mit einem Pelz/ mit einer Feder im Haar/ und wahrscheinlich/ ja ei'm Kopftuch oder Schleier oder so was	37
3	das Bild hier auf der Rückseite, das ist das typische Psychologenbild/ wo man positiv und negativ denken kann/ positiv ist, dass man eine junge Frau sieht, die sehr elegant aus gekleidet ist	53
4	ich weiß nur, dass es also in dies'm sind zwei Gesichter/ einma´ eine alte Frau/ mit einer Feder hier ob´m/ dem Kopftuch/ dem schwarz'n Haar	37
5	ach so/ also eine halbe Minute also auf dem schön'n Bild sehe ich eine schöne Dame/ die/ dieses Ge/ also dieses Bild/ vermute ich ma' ist gemalt word'n von Toulouse le Trac	51
6	ja, wenn ich auf das Bild schaue/ es erinnert mich in erster Linie erst ma' an den/ an die Zeit des Jugendstils/ eig'ntlich sehr/ sehr verspielt in der Formgebung ein Frauenkopf	46
7	sie sieht schön aus, hat ein sehr schönes Profil/ dunkle Haare/ trägt eine Pelzstola/ und eine F oder eine Federboa	32
8	tja, was könnte man da noch sag´n, es es ´s könnte auch´n/ n'Büff'l, nee aber mit einer/ nur so geht auch nich/ also ich würde beinah´ schon sag´n/ ´n Damen-/ kopf	43
9	ja es stellt eine Dame/ dar/ die äh seitlich kuckt, man kann ihr Gesicht äh nur ganz von der Seite seh´n/ sie trägt eine sonderbare Kopfbekleidung, ich weiß nich, ob das ein Hut sein soll oder so was ähnliches	54
10	dieses Bild ähm hab´ ich schon mal geseh´n und zwar/ ähm/ zeigt das einmal/ äh wenn man auf den erst´n Blick hinsieht/ ähm anschein´nd/ das Profil einer jungen Frau äh mit/	45

	Hut und Feder	
11	na das ist eindeutig ein Frau'nkopf/	50
	mit einer/	
	Pelzstola oder Federboa um dem Hals, irg´ndwas auf ´m Kopf, was man nich	
	erkenn'n kann/	
	könnte auch Federn sein/	
	schwarzhaarige/	
	Topffrisur	
12	und es gibt zwei Sichtart´n, halt einma eine junge Frau/	48
	die äh da sieht man so den Kopf und/	
	die Haare und hat `ne Feder halt im Haar zu steck'n und dreht ihr'n Kopf so	
	nach hint'n und kuckt	
13	psychologische/	41
	Tage sind darauf verzeichnet, ansonst'n is' ein Bild, ein/	
	Mädchen, schick gemacht mit/	
	groß'm/	
	Haaraufbau/	
	und irg'ndwelch'n/	
1.1	Federn umgelegt	F0
14	ja das is´ eine junge Frau un´ eine alte Frau/ die Kontur hier/	58
	d's 's' 's Haar mit dem/ m' d' Wimpern un' die Nase un' das 'st dann hier die Nase von der alt'n Frau	
	m' d' Wimpern un' die Nase un' das 'st dann hier die Nase von der alt'n Frau, fin' ich sehr beeindruck'nd, dass man so awas mach'n kann	
15	dieses Bild stellt ein Vexierbild dar, ich glaube so heißt des,/	54
13	äh und zwar je nachdem/	34
	äh mit we aus welcher Perspektive ich mir das anschaue/	
	äh kann ich eine alte Frau seh'n, ja die seh' ich jetzt auch g'rade	
16	'as is' vielleicht/	30
10	Jug´ndstil, ein Holzschnitt/	
	von einer Dame/	
	in Schwarz-Weiß, mit ei'm Pelz und das Gesicht etwas abgewandt	
17	das is´ ein ziemlich bekanntes Bild, aber mir fällt nicht ein, von wem es jetzt ist,	46
	das is´ eines Portrait, ein seitliches Portrait/	
	von einer Frau, ich schätze ma' so zwanziger Jahre gezeichnet	
18	tja,/	39
	also det Bild/	
	kenn' ich schon/	
	einma´ kann man ´ne Frau seh´n und wenn man/	
	irg´ndwie anders hinkuckt, dann ´ne Hexe/	
	aber ich seh´ jetz´ nur die Frau also	
19	also ich hab´ hier ein wunderschönes Kalenderblatt vor mir zu lieg´n und es	61
	zeigt eine sicherlich etwas ältere Frau, erinnert mich äh fast an eine/	
	Hexe aus irgend'm'm Märchen/	
	obwohl sie so böse gar nich´ aussieht	
20	also/	53
	dieses Bild ist mir ja nu' nicht unbekannt/	
	es wird ja häufig eingesetzt, um ähm zu check'n, was man sieht, also um	
	Wahrnehmungsschulung off nsichtlich, oder überhaupt Wahrnehmung/	
21	abzuprüf'n	40
21	ähm ich würde sag'n, wenn ich so auf 'n erst'n Blick, würd' ich/	40
	sag´n, es is´ ´ne/ eine/	
	Hexe oder eine alte Frau mit einer/	
22	riesig groß'n Nase ich würde sag'n, das ist so/	36
44	Zwanz´jer-Jahre-Motiv/	30
	eine Frau/	
	die eine/	
	Pelzstola umhat/	
	und sich 'n biss'l/	

	nach/	
	nach/ links und rechts/	
	zur Seite beugt	
23	bis zum dreißigst´n September und unt´n größeres/	38
20	Bild oder Graphik von 'ner/	
	Dame, erinnert mich 'n bisschen an/	
	Toulouse le Trec in Schwarz-Weiß	
24	Das is' so ein lustiges Räts'l, wo man 'rausbekomm' muss, wer die junge Frau	76
	is' und wer die alte Frau is', wenn ich's so 'rum drehe/	
	dann seh' ich die junge Frau mit den Wimpern und wenn ich es/	
	umdrehe, so ging das glaub´ ich/	
	sollte man 'ne alte Frau seh'n, seh' ich aber nich', Moment, das krieg' ich	
	noch hin	
25	und ich bin ganz traurig, dass sie/	59
	jetzt im September aufhört, weil sie dann ihre Prüfung/	
	bestan'n hat, und ich hoffe natürlich, dass sie eine Anstellung an 'ner Schule	
	bekommt, weil ich glaube, sie wird 'ne sehr gute Lehrerin	40
26	isch seh' da ein Bild, das erinnert mich an/	40
	Toulouse le Trec(e)/ eine schöne Frau mit dem schön´ Hut mit einer Feder/	
	dunkle Haare,/	
	und einer Art/	
	Stola	
27	tja, ich denke das is' eine/	30
	eine Zeichnung einer Frau/	
	mit/ [ähm]	
	schwarz'n Haaren/	
	die vor einem/	
	Schleier/ [ähm]	
	steht oder sitzt	
28	und/ [äh]	54
	man könnte sag´n, das Bild könnte aus dem/	
	neunzehnt'n Jahrhundert sein/	
	genau, sie hat vielleicht auch so 'ne Art Pelzkrag'n um/ ja das is'/ [äh]	
	'ne hübsche junge Frau aus'm neunzehnt'n Jahrhundert würd' ich sag'n	
29	irgendwie kenn ich das nämlich/	52
20	'ne Hexe, genau, jetzt hab' ich's, so is', wenn man die Brille aufsetzt, ne/	02
	also, es is' eine/	
	ältere Dame mit einem äh etwas hervorsteh'nden Kinn, einer Warze	
30	ja es scheint mir'n bekanntes Bild zu sein/	36
	man kann Verschied'nes interpretier'n/	
	also man kann unter anderem eine schöne Frau seh'n	
31	die Karte ist eine/	36
	Darstellung der Kunst, ich würde vermut'n/	
	australische Urkunst, Aborigene/	
	ebenso die Schriftzeichen	
32	ähm ich sehe vor mir ein sogenanntes Vexierbild, das heißt, je nachdem, äh	52
	wie meine	
	Einstellung ist, seh' ich entweder eine alte Frau	
	oder eine junge Frau, das heißt auch "my mother – my wife"	
33	wo is' etz' de Junge, i kenn´ des Bild nämlich –zufällig/	61
55	und hob´ früher g'wusst, dass do a junge Frau ah ja, etza sig i die junge Frau	
	a wieder, genau, die junge Frau, die/	
	nat den Kopt etwas weddedrent und malisient nur die Nase	
34	hat den Kopf etwas weggedreht und ma' sieht nur die Nase i kann des ned erklär'n, ganz, sind des die Haare/	42
34	i kann des ned erklär'n, ganz, sind des die Haare/ un' vorne ein/	42
34	i kann des ned erklär'n, ganz, sind des die Haare/	42
34	i kann des ned erklär'n, ganz, sind des die Haare/ un' vorne ein/	42

35	und wenn man sich des Bild anders anschsieht, dann sieht man/	53
	was hab´ ich jetzt grad´ gesagt, ´n´ junge Frau/ also jed'nfalls sieht ma' da noch ´ne alte Frau äh mit Kopftuch und/ [ähm]/	
	einer krummen Nase, 's's' vielleicht 'ne Hexe	
36	un' ma' sollt' glaub' i auch noch a alte Frau seh'n, die hat a a schwarzes Haar	47
	mit am ries'n Kopftuch/	
	a ries'n Hak'nnase/	
	kleinen Aug'n/ ´m ries'nlangen Kinn/	
	und auch 'n' schwarz'n Pelz	
37	also i sig do/	48
	a junge Frau, de wegschaut mit am Feder am Kopf/ [ähm]	
	mit ihre Wimpern un' de' gloane Nase und dann de' gloane Ohr/ und in am Pelz und hint'n hat's so 'n Schleier runter	
38	auf ihr'm Kopf hat sie eine Feder/	32
00	schwarze Haare un' an ries'n Pelzmant'l/	02
	de alte Frau/ [ähm]	
	sieht ma'/	
20	ja vo' schräg vorne so ich habe ein/	24
39	Kalenderblatt vor mir, vom September/	31
	mit einem Schwarz-Weiß-Druck/	
	auf dem Schwarz-Weiß-Druck/	
	sind zwei Frauenköpfe	
40	sie hat ein' Schleier auf dem Kopf, vielleicht is' ja a Fasching/	47
	der wirk sehr wall'nd/ und sehr luftig und locker/	
	und der is' wahrscheinlich mit einer Haarnad'l an dem schwarz'n Haar befestigt	
41	es könnte sein, dass es ein Gesicht sein soll/	50
	ich bin mir aber absolut unsicher/	
	's gibt noch etwas ähnliches auf'm Kopf'/	
42	nein, ähnlich kann man nicht sag'n, weil ich das ja gar nich' zuordnen kann das Bild is' in Schwarz-Weiß/	37
42	und ich vermute mal, dass es 'ne/	31
	s'äh Zeichnung 'ne Graphik is'/	
	und/ [äh]	
	die kuckt'n bissjen tückisch/	
	und oder se/	
	sie/ [äh] is' krank	
43	sehe darauf eine/	42
	Frau/	
	mit gesenkt'm Blick/	
	vielleicht 'ne Pelzstola um, 'ne Halskette/	
44	und im Hintergrund was, nich' so zu erkenn'n, könnte 'ne Sess'llehne sein auf dies'm Kalenderblatt ist/	32
	die Zeichnung einer/	02
	jung'n Frau/	
	vermutlich jung'n Frau, weil das Gesicht leicht abgewendet ist	
45	ja ich seh' eig'ntlich auch eine junge Frau und keine alte Frau/	48
	etwas mondän, die ausgeh'n will/ geschmückt mit einer Feder im Haar/	
	ganz einig bin ich mir nich', ob sie ein Kopftuch trägt	
46	also wenn, wenn ich äh das, so kurz raufkucke/	42
	´ann würd´ ich sag'n, es könnte an eine/ [ähm]	
	Zeichnung von Toulouse le Trec erinnern/ [äh]	
47	das is' eine Dame, eindeutig das könnte'n Schleier sein, sie geht zu einer festlich'n Veranstaltung, es könnt'	56
41	ne Federboa sein, oder irg'ndwie was/	30
	schickes, pelzartjes auch/	
	äh ´ne Feder irg'ndwie in ihrem Haar noch zähm/	

	sehr elegant	
48	wahrscheinlich will sie g'rade zu einer Veranstaltung/	29
	denn sie/	
	hat ein/	
	eine Federboa/	
	und ein' Halsschmuck/	
	ja	
49	oh das is' ein Bild aus dem man so viel erkenn'n kann, oder auch gar nichts,	89
	es/	
	ja die vornehme Dame mit dem schwarz'n Haar/	
	und der Feder da ob'n dran/	
	ich weiß ni, ich glaube/	
	ich hab das so in Erinnerung, dass es irg'ndwie so ein Fixierbild ist, wenn man	
	lange draufkuckt, oder die Aug'n zukneift, dann/	
	kommt da was and'res zum Vorschein, nicht	07
50	ja auf diesem Bild seh' ich eine junge Dame/	37
	mit einer/	
	dunklen Frisur/	
	mit ei'm/	
F.4	wahrscheinlich Tuch auf dem Kopf, was so 'n bisschen umherflattert	42
51	äh es handelt sich um ein Schwarz-Weiß-Bild, etwa eine halbe DIN-A4-Seite	42
	groß/	
	und äh ist dieses typische/ Bild, was man von mehreren Seit'n/	
	betrachtet	
52	man kann einerseits seh´n, dass es ´ne Frau is´, ne junge Frau, und	45
52	and'rerseits is' es auch 'ne alte Frau, 'ber des seh' ich g'rad' nich'/	45
	ähm ja die junge Frau/	
	blickt über ihre Schulter	
53	da hat's heut' ned vül gem, 's Fleisch war scho' fertig,/	44
00	[d]ann hab´ ma no an Kartoff'lbrei g´macht/	1
	also es war scho' mager heut' und es/	
	ma' soll ja ned so üppich lem, de Feiertag', ne	
54	auf dies'm Bild sieht man eine/	31
	junge Frau/	
	die ihr Gesicht abwendet/	
	und äh sie hat äh schwarze Haare, äh sie hat ein	
55	ah ja also dieses Bild ähm hab ich g'rade vor zwei Wochen schon mal geseh'n	39
	und ähm ich seh' immer die alte Frau aber ich seh' nie/	
	die junge Frau	
56	ja also diese alte Hexe zum Beispiel hat ein ziemlich langes, spitzes Kinn/	36
	kleine Aug'n, eine/	
	ähm, Hak'nnase/	
	ein Kopftuch um	

14 Text- und Bildstimulus, Hörtestformular

Die nächsten beiden Seiten sind genaue Abbilder der Stimuli, anhand derer die Sprecherinnen die Sprechbedingungen gelesene und freie Rede erzeugten. Die Aufgabenstellung war den Text möglichst fehlerfrei zu lesen und das Bild bzw. das Kalenderblatt zu beschreiben. (Die Aufforderung lautete in etwa: "Beschreiben Sie bitte ca. eine halbe Minute lang was Sie sehen.") Vom gelesenen Text wurde jeweils nur der mittlere Abschnitt¹⁵¹ ausgewertet.

Danach folgt der Testbogen zu einer der beiden Hörtestversionen. Die entsprechende Hörtest-CD befindet sich am Ende dieser Arbeit.

_

¹⁵¹ An der nächsten Ecke bin ich links in die Helenenstraße abgebogen und kurz danach gleich wieder links in die Schloßstraße – ach nein, falsch, da musste ich ja rechts in die Königsberger Straße.

Ich bin zuerst einmal nur geradeaus gegangen. Und dann an der fünften Ampel rechts in die Grabenstraße rein. Die heißt übrigens nach einem halben Kilometer Steinmetzstraße. An der nächsten Ecke bin ich links in die Helenenstraße abgebogen und kurz danach gleich wieder links in die Schloßstraße – ach nein, falsch, da musste ich ja rechts in die Königsberger Straße. Dann lief ich am Schwimmbad vorbei bis zur Überführung – wie Du es mir gesagt hast.

Die Seite kommt weg und dafür eine Farbkopie des Kalenderblattes rein.

Vielen Dank für die Bereitschaft, mich bei der Durchführung der empirischen Untersuchungen im Rahmen meiner Magisterarbeit zu unterstützen. Das Thema der Arbeit lautet "Altersbedingte Veränderungen von Frauenstimmen - eine akustische und perzeptive Analyse". Hauptanliegen dieser Arbeit ist, der Frage nachzugehen, welche akustischen Parameter für die Wahrnehmung des Alters aufgrund der Stimme verantwortlich sind. Dafür ist es notwendig, die sprachlichen Beispiele, die der akustischen Analyse unterzogen werden, hinsichtlich des Alters der Sprecherin schätzen zu lassen.

Auf der CD befinden sich Aufnahmen von 56 Sprecherinnen unterschiedlichen Alters. In den CD-Tracks 1-28 werden Vokale (/a/, /i/ und /u/) angehalten, jeweils für 2,2 Sekunden. Dazwischen ist eine Pause von 4,4 Sekunden. Jeder Track umfasst 12 Vokale (bzw. Beispiele). Die Abfolge ist zufällig. Die Tracks 29-42 beinhalten jeweils 4 Aufnahmen einer gelesenen Wegbeschreibung. Jede Aufnahme dauert ca. 10 Sekunden. Zwischen den Aufnahmen (Beispielen) ist eine 2-sekündige Pause. Die Tracks 43-56 beinhalten je 4 Aufnahmen freier Rede. Mit Ausnahme von 2 Beispielen war die Beschreibung eines Bildes Grundlage dieser freien Rede. Eine Konzentration auf die Sprechweise, nicht auf den Inhalt des Gesagten, wäre bei diesen Beispielen wünschenswert. Die Zusammenfassung mehrerer Beispiele zu einem Track begründet sich nur durch die Beschränkung des Audio-CD-Formats auf 99 Tracks.

Am besten wäre es, wenn Sie die CD in ruhiger Umgebung mit einem Stereo-Kopfhörer abhören. Die Beispiele sind unterschiedlich laut. Versuchen Sie aber eine einmal gewählte Abspiellautstärke beizubehalten.

Jedes Sprachbeispiel ist nur einmal zu hören. In der kurzen Pause danach sollte das Alter der Sprecherin geschätzt werden. Dies ist v.a. bei den Vokalbeispielen nicht einfach. Trotzdem sollten Sie ein Beispiel nur in Ausnahmefällen wiederholt anhören, z. B. wenn Sie wegen einer Störung zu keiner Einschätzung gelangen konnten.

Die Spielzeit der CD, also auch die Dauer der gesamten Schätzungsprozedur, beträgt fast 64 Minuten. Die Konzentration dürfte über diesen Zeitraum nur schwer aufrecht zu erhalten sein. Bitte machen Sie nötigenfalls Pausen (beliebiger Dauer) oder beenden Sie die Schätzung, wenn es zuviel wird.

Auf den folgenden Seiten finden Sie ein tabellarisches Formular, das Ihnen das Notieren Ihrer Alterschätzungen und mir die Auswertung erleichtern soll:

Für jeden Track auf der CD gibt es eine Tabelle. Für jedes Beispiel (also zunächst für jeden Vokal, später für die Abschnitte in denen dieselbe Sprecherin zu hören ist) ist eine Zeile in der jeweiligen Tabelle vorgesehen. In der Spalte ganz links ist die Nummer des CD-Tracks verzeichnet, in dem die jeweiligen Beispiele zu finden sind. In der zweiten Spalte sind die Beispiele durchlaufend nummeriert. Damit Zuordnungsfehler leichter vermieden werden können, wird in den dritten Spalten der Vokaltabellen der Vokal, der beurteilt werden soll genannt. Diese Spalte entfällt bei der Beurteilung zusammenhängender Sprache.

Die nächste Spalte ist für Ihre Altersschätzung vorgesehen. Bitte tragen Sie dort, nachdem Sie das jeweilige Beispiel gehört haben, eine Zahl ein, die Ihrer Einschätzung zufolge am ehesten dem Alter der Sprecherin in Jahren entspricht. Wenn Sie z. B. der Meinung sind, der Vokal X klingt, als ob die Sprecherin zwischen 30 und 40 Jahre alt ist, dann notieren Sie im entsprechenden Feld bitte "35".

Falls Sie glauben eine Sprecherin erkannt zu haben, erübrigt sich die Einschätzung des Alters. In diesem Fall markieren Sie bitte die entsprechende Tabellenzelle mit einem Kreuz.

Ihre persönlichen Daten:

Ihr G	eschlech	t			
Ihr A	lter				
Ist	Ihnen	eine	Beeinträchtigung	Ihres	
Hörv	ermögens	s bekanr	nt?		

Track	Beispiel	Vokal	Alter	erkannt		Track	Beispiel	Vokal	Alter	erkannt
	1	u					37	u		
	2	i					38	а		
	3	а					39	u		
	4	i					40	u		
	5	u					41	u		
1	6	а				1	42	i		
	7	а				4	43	u		
	8	u					44	i		
	9	i					45			
	10	u					46	а		
	11	u					47	u		
	12	а				48	u			
	13	u					49	а		
	14	i					50	u		
	15	а			5	51	i			
	16	a				52	u			
	17	u				53	u			
	18	u				54	a			
2	19	i				55	i			
	20	а				56	i			
	21	u				57	а			
	22	i					58	i		
	23	i					59	u		
	24	u					60	а		
	25	2					61	i		
	26	a u					62	i		
	27	i					63	a		
	28	i					64	a İ		
	29	a					65	u		
	30	i					66	u		
3	31	i				6	67	i		
	32	a					68	a		
	33	i					69	a		
	34	i					70	a		
	35	a					71	i		
	36	u					72	i		
		4					, <u>-</u>	•	<u> </u>	1

Track	Beispiel	Vokal	Alter	erkannt		Track	Beispiel	Vokal	Alter	erkannt
	73	а					109	а		
	74	u					110	а		
	75	i					111	а		
	76	а					112	i		
	77	u					113	u		
7	78	i			10	114	а			
7	79	u				10	115	i		
	80	а					116	а		
	81	u					117	u		
	82	а					118	а		
	83	u					119	i		
	84	i				120	а			
	85	u					121	а		
	86	i					122	u		
	87	u				123	i			
	88	u					124	i		
0	89	i					125	u		
	90	а				11	126	а		
8	91	u			11	127	а			
	92	а				128	а			
	93	i					129	u		
	94	u					130	а		
	95	u					131	а		
	96	а					132	u		
	97	u					133	li		
	98	i					134	l i		
	99	а					135	а		
	100	u					136	а		
	101	u					137	i		
	102	i				10	138	u		
9	103	а				12	139	а		
	104	i					140	а		
	105	i					141	u		
	106	u					142	а		
-	107	а					143	а		
	108	u					144	а		
_										

Track E	Beispiel '	Vokal	Alter erkannt	Track E	Beispiel	Vokal	Alter	erkannt
	145	i			181	а		
	146	i			182	i		
	147	u			183	u		
	148	j			184	а		
	149	i			185	а		
12	150	u		16	186	i		
13	151	а		16	187	а		
	152	u			188	u		
	153	а			189	i		
	154	i			190	а		
	155	u			191	i		
	156	а			192	i		
	157	i			193	а		
	158	u			194	a		
	159	u			195	i		
	160	u			196	а		
4.4	161	u		17	197	i		
	162	а			198	а		
14	163	u			199	а		
	164	j			200	i		
	165	а			201	а		
	166	u			202	i		
	167	u			203	u		
	168	u			204	u		
_	169	i			205	u		
	170	a			206	a		
	171	i			207	u		
	172	u			208	i		
	173	i			209	u		
4 -	174	a		4.0	210	u		
15	175	i		18	211	a		
	176	u			212	i		
	177	u			213	a		
	178	i			214	u		
	179	u			215	u		
	180	i			216	a		
	100	<u>'</u>			_ 10	<u> </u>		

Track	Beispiel	Vokal	Alter	erkannt		Track	Beispiel	Vokal	Alter	erkannt
	217	i					253	i		
	218	а					254	u		
	219	i					255	u		
	220	i					256	u		
	221	u					257	u		
10	222	i				22	258	u		
19	223	а					259	а		
	224	а				260	i			
	225	u					261	i		
	226	i				262	а			
	227	u				263	i			
	228	i					264	i		
	229	u					265	u		
	230	u					266	u		
	231	а				267	а			
	232	u					268	i		
	233	а					269	а		
20	234	u			22	270	i			
20	235	u				23	271	u		
	236	а					272	i		
	237	i					273	i		
	238	а					274	i		
	239	u					275	i		
	240	а					276	а		
	241	а					277	l i		
	242	а					278	u		
	243	а					279	a		
	244	i					280	i		
	245	u					281	а		
24	246	u				24	282	i		
21	247	u				24	283	u		
	248	i					284	а		
	249	i					285	u		
	250	i					286	i		
	251	а					287	u		
	252	i					288	i		

Track E	Beispiel	Vokal	Alter	erkannt
	289	u		
	290	а		
	291	i		
	292	а		
	293	u		
25	294	а		
23	295	u		
	296	а		
	297	а		
	298	i		
	299	i		
	300	а		
	301	u		
	302	а		
	303	i		
	304	i		
	305	i		
26	306	а		
26	607	а		
	308	u		
	309	j		
	310	а		
	311	а		
	312	i		
	313	а		
	314	a		
	315	а		
	316	u		
	317	u		
27	317 318	а		
27	319	i		
	320	i		
	321	u		
	322	i		
	323	а		
	324	а		
·	· · · · · · · · · · · · · · · · · · ·			·

Track	Beispiel	Vokal	Alter	erkannt
	325	u		
	326	i		
	327	u		
	328	а		
	329	i		
28	330	i		
20	331	u		
	332	а		
	333	i		
	334	u		
	335	i		
	336	u		

Track	Beispiel	Alter	erkannt	Track	Beispiel	Alter	erkannt
	1				29		
20	2			26	30		
29	3			36	31		
	4				32		
	5				33		
30	5 6 7			27	34		
30	$\begin{array}{c c} 0 & \hline & 7 & \hline & 37 \\ \hline \end{array}$	35					
	8				36		
	9				37		
24	10			38	38		
31	11				39		
	12				40		
	13			39	41		
20	14				42		
32	15				43		
	16				44		
	17				45		
00	18			40	46		
33	19			40	47		
	20				48		
	21				49		
24	22			11	50		
34	23			41	51		
	24				52		
	25				53		
25	26			40	54		
35	27			42	55		
	28				56		

Track	Beispiel	Alter	erkannt	Track	Beispiel	Alter	erkannt
43	1			50	29		
	2				30		
	3				31		
	4				32		
44	5			51	33		
	6				34		
	7				35		
	8				36		
45	9			52	37		
	10				38		
	11				39		
	12				40		
46	13			53	41		
	14				42		
	15				43		
	16				44		
47	17			54	45		
	18				46		
	19				47		
	20				48		
48	21			55	49		
	22				50		
	23				51		
	24				52		
49	25				53		
	26			56	54		
	27				55		
	28				56		